Defeitos Congênitos das plaquetas
Palabras clave:
trombocitopenia hereditária, trombocitopatia hereditária, plaquetas, plaquetopenia congênita, defeitos congênitos das plaquetas.Resumen
Introdução: As plaquetas desempenham um papel importante no processo de hemostasia e alterações numéricas (trombocitopenias) ou qualitativas (trombocitopatias) das plaquetas levam a sangramento espontâneo, tempo de sangramento prolongado, hemorragias mucocutâneas, gastrintestinais e urinárias. A maioria das alterações plaquetárias tem suas manifestações clínicas durante a infância, porém algumas são diagnosticadas em idade mais avançada. Quando a trombocitopenia ou a trombocitopatia é diagnosticada, a forma congênita deve ser distinguida das formas adquiridas. A forma congênita pode ser uma enfermidade isolada ou fazer parte de uma síndrome. Uma vez estabelecido que a desordem é hereditária, o modo de herança é útil no diagnóstico diferencial. Objetivo: Revisar os mecanismos patológicos relacionados aos defeitos congênitos das plaquetas. Metodologia: A revisão foi realizada por levantamento bibliográfico de banco de dados obtidos através de pesquisa direta, MEDLINE, PUBMED e LILACS-BIREME; sendo selecionados artigos publicados abordando as alterações congênitas das plaquetas. Conclusão: Defeitos congênitos que envolvem as plaquetas levam a sangramentos cutâneos, mucocutâneos e gastrintestinal e urinário. Uma vez que estes defeitos são de caráter congênito e hereditário, as crianças são os pacientes predominantes. Em casos graves, o tratamento de escolha é o transplante de células tronco hematopoiéticas.
Citas
-SORRENTINO S, et al. Roll, adhere, spread and contract: structural mechanics of platelet function. Eur J Cell Biol. 2015; 94:129-138.
-GEDDIS AE. Inherited thrombocytopenias: an approach to diagnosis and management. Int J Lab Hematol. 2013; 35:14-25.
-FERNíNDEZ KS, ALARCÓN P. Nenatal thrombocytopenia. Neo Reviews. 2013;14: e74-e81.
-KUMAR R, KAHR WH. Congenital thrombocytopenia: clinical manifestations, laboratory abnormalities, and molecular defects of a heterogeneous group of conditions. Hematol Oncol Clin North Am. 2013; 27:465-494.
-SIM X, et al. Understanding platelet generation from megakaryocytes: implications for in vitro-derived platelets. Blood. 2016 Jan 19. pii: blood-2015-08-607929. [Epub ahead of print]
-FURIE BC, FLAUMENHAFT R. A journey with platelet P-selectin: the molecular basis of granulate secretion, signaling and cell adhesion. Thromb Haemost. 2001; 86: 214-221.
-GIBBINS JM. Platelet adhesion signaling and the regulation of thrombus formation. J Cells Sci. 2004; 117: 3415-34325.
-FLAUMENHAFT R. Molecular basis of platelet granule secretion. Arterioscler Thromb Vasc Biol. 2003; 23: 1152-1160.
-HARTWIG JH. Platelet structure. In: Michelson, A. D. Platelets. California: Academic Press, 2002: 37-52.
-LENTING PJ, CHRISTOPHE OD, DENIS CV. von Willebrand factor biosynthesis, secretion, and clearance: connecting the far ends. Blood. 2015; 125: 2019-2028.
-RUGGERI ZM, MENDOLICCHIO GL. Interaction of von Willebrand factor with platelets and the vessel wall. Hamostaseologie. 2015; 35: 211-224.
-NURDEN AT. Platelet membrane glycoproteins: a historical review. Semin Thromb Hemost. 2014; 40:577-584.
-KUROKAWA T, ZHENG YW, OHKOHCHI N. Novel functions of platelets in the liver. J Gastroenterol Hepatol. 2015 Dec 3. doi: 10.1111/jgh.13244. [Epub ahead of print].
-HOU Y, et al. Platelets in hemostasis and thrombosis: Novel mechanisms of fibrinogen independent platelet aggregation and fibronectin-mediated protein wave of hemostasis. J Biomed Res. 2015 Oct 30; 29. doi: 10.7555/JBR.29.20150121. [Epub ahead of print]
-NOWAK-GÖTTL U, et al. Bleeding issues in neonates and infants - update 2015. Thromb Res. 2015; 135 Suppl 1:S41-43.
-PODDA G, et al. Congenital defects of platelet function. Platelets. 2012; 23: 552-563.
-DE YBARRONDO L, BARRATT MS. Thrombocytopenia absent radius syndrome. Pediatr Rev. 2011; 32: 399-400.
-ALBERS CA, et al. New insights into the genetic basis of TAR (thrombocytopenia-absent radii) syndrome. Curr Opin Genet Dev. 2013; 23: 316-323.
-FAVIER R, RASLOVA H. Progress in understanding the diagnosis and molecular genetics of macrothrombocytopenias. Br J Haematol. 2015; 170: 626-639.
-SAVOIA A, et al. Spectrum of the mutations in Bernard-Soulier syndrome. Hum Mutat. 2014; 35: 1033-1045.
-BRAGADOTTIR G, et al. Clinical phenotype in heterozygote and biallelic Bernard-Soulier syndrome, a case control study. Am J Hematol. 2015; 90: 149-155.
-ANDREWS RK, BERNDT MC. Bernard-Soulier syndrome: an update. Semin Thromb Hemost. 2013; 39: 656-662.
-NURDEN AT, NURDEN P. Inherited disorders of platelet function: selected updates. J Thromb Haemost. 2015; 13 Suppl 1:S2-9.
-DI PAOLA J, JOHNSON J. Thrombocytopenias due to gray platelet syndrome or THC2 mutations. Semin Thromb Hemost. 2011; 37: 690-697.
-FRESON K, WIJGAERTS A, VAN GEET C. Update on the causes of platelet disorders and functional consequences. Int J Lab Hematol. 2014; 36: 313-325.
-NEUNERT CE, JOURNEYCAKE JM. Congenital platelet disorders. Hematology/Oncology
Clinics of North America. 2007; 21: 663-684.
-DROUIN A, et al. Newly recognized cellular abnormalities in the gray platelet syndrome. Blood 2001; 98: 1382-1391.
-SALLES II, et al. Inherited traits affecting platelet function. Blood Rev. 2008; 22: 155-172.
-SANDROCK-LANG K, et al. Inherited platelet disorders. Hamostaseologie. 2015; 35(2). [Epub ahead of print].
-SíNCHEZ-GUIU I, et al. Hermansky-Pudlak syndrome. Overview of clinical and molecular features and case report of a new HPS-1 variant. Hamostaseologie. 2014; 34: 301-309.
-SEWARD SL JR, GAHL WA. Hermansky-Pudlak syndrome: health care throughout life. Pediatrics. 2013; 132: 153-160.
-SCHNEIER AJ, FULTON AB. The hermansky-pudlak syndrome: clinical features and imperatives from an ophthalmic perspective. Semin Ophthalmol. 2013; 28(5-6):387-391.
-HURFORD MT, SEBASTIANO C. Hermansky-Pudlak Syndrome: report of a case and review of the literature. Int J Clin Exp Pathol. 2008; 1: 550-554.
-SíNCHEZ-GUIU I, et al. Chediak-Higashi syndrome: description of two novel homozygous missense mutations causing divergent clinical phenotype. Eur J Haematol. 2014, 92: 49-58.
-BOUATAY A, et al. Chediak-higashi syndrome presented as accelerated phase: case report and review of the literature. Indian J Hematol Blood Transfus. 2014; 30(Suppl 1): 223-226.
-SOOD S, et al. Chediak-higashi syndrome in accelerated phase: a rare case report with review of literature. Indian J Hematol Blood Transfus. 2014; 30(Suppl 1): 195-198.
-FAVIER R, et al. Jacobsen syndrome: Advances in our knowledge of phenotype and genotype. Am J Med Genet C Semin Med Genet. 2015; 169: 239-250.
-PATERSON AD, et al. Persons with Quebec platelet disorder have a tandem duplication of PLAU, the urokinase plasminogen activator gene. Blood. 2010; 115: 1264-1266.
-HAYWARD CP, RIVARD GE. Quebec platelet disorder. Expert Rev Hematol. 2011; 4: 137-141.
-ABBASI AH, SHAIKH Q, HUSSAIN SA. Quebec platelet disorder. J Coll Physicians Surg Pak. 2010; 20: 549-550.
-BLAVIGNAC J, et al. Quebec platelet disorder: update on pathogenesis, diagnosis, and treatment. Semin Thromb Hemost. 2011; 37: 713-720.
-NURDEN A, NURDEN P. Advances in our understanding of the molecular basis of disorders of platelet function. J. Thromb. Haemost. 2011; 9 (suppl. 1): 76-91.
-KRISHNEGOWDA M, RAJASHEKARAIAH V. Platelet disorders: an overview. Blood Coagul Fibrinolysis. 2015; 26: 479-491.
-FIORE M, et al. Founder effect and estimation of the age of the French Gypsy mutation associated with Glanzmann thrombasthenia in Manouche families. Europ. J. Hum. Genet. 2011; 19: 981-987.
-NURDEN AT, PILLOIS X, WILCOX DA. Glanzmann thrombasthenia: state of the art and future directions. Semin Thromb Hemost. 2013; 39: 642-655.
-NURDEN AT, et al. Glanzmann thrombasthenia: a review of ITGA2B and ITGB3 defects with emphasis on variants, phenotypic variability, and mouse models. Blood. 2011; 118: 5996-6005.
-SOLH T, BOTSFORD A, SOLH M. Glanzmann's thrombasthenia: pathogenesis, diagnosis, and current and emerging treatment options. J Blood Med. 2015; 6: 219-227.
-RAJPURKAR M, et al. Use of recombinant activated factor VII in patients with Glanzmann's thrombasthenia: a review of the literature. Haemophilia. 2014; 20: 464-471.
-NURDEN AT, PILLOIS X, NURDEN P. Understanding the genetic basis of Glanzmann thrombasthenia: implications for treatment. Expert Rev Hematol. 2012; 5: 487-503.
-MASSAAD MJ, RAMESH N, GEHA RS. Wiskott-Aldrich syndrome: a comprehensive review. Ann N Y Acad Sci. 2013; 1285: 26-43.
-OCHS HD, THRASHER AJ. The Wiskott-Aldrich syndrome. J Allergy Clin Immunol 2006; 117: 725-738.
-BLANCAS-GALICIA L, ESCAMILLA-QUIROZ C, YAMAZAKI-NAKASHIMADA MA. Wiskott-Aldrich Syndrome: An updated review. Rev Alerg Mex. 2011; 58: 213-218.
-COTTA-DE-ALMEIDA V, DUPRÉ L, GUIPOUY D, VASCONCELOS Z. Signal Integration during T Lymphocyte Activation and Function: Lessons from the Wiskott-AldrichSyndrome. Front Immunol. 2015 Feb 9; 6:47. doi: 10.3389/fimmu.2015.00047. eCollection 2015.
-BUCHBINDER D, NUGENT DJ, FILLIPOVICH AH. Wiskott-Aldrich syndrome: diagnosis, current management, and emerging treatments. Appl Clin Genet. 2014; 7: 55-66.
-ALBERT MH, NOTARANGELO LD, OCHS HD. Clinical spectrum, pathophysiology and treatment of the Wiskott-Aldrich syndrome. Curr Opin Hematol. 2011; 18: 42-48.
-MINELLI A, et al. Familial platelet disorder with propensity to acute myelogenous leukemia: genetic heterogeneity and progression to leukemia via acquisition of clonal chromosome anomalies. Genes Chromosomes Cancer. 2004; 40: 165-171.
-BERI-DEXHEIMER M, et al. Clinical phenotype of germline RUNX1 haploinsufficiency: from point mutations to large genomic deletions. Europ. J. Hum. Genet. 2008; 16: 1014-1018.
-PREUDHOMME C, et al. High frequency of RUNX1 biallelic alteration in acute myeloid leukemia secondary to familial platelet disorder. Blood. 2009; 113: 5583-5587.
-KING S, et al. Congenital amegakaryocytic thrombocytopenia: a retrospective clinical analysis of 20 patients. Brit. J. Haemat. 2005; 131: 636-644.
-BALLMAIER M, et al. c-mpl mutations are the cause of congenital amegakaryocytic thrombocytopenia. Blood. 2001; 97: 139-146.
-EIZAGUIRRE MB, VICARNDI AP, ZALDEGUI IP. Congenital amegakaryocytic thrombocytopenia in a 12-year-old boy with no sings of pancytopenia: molecular analysis. An Pediatr (Barc). 2008; 68: 353-356.
-NIIHORI T, et al. Mutations in MECOM, encoding oncoprotein EVI1, cause radioulnar synostosis with amegakaryocytic thrombocytopenia. Am. J. Hum. Genet. 2015; 97: 848-854.
-THOMPSON AA, et al. Congenital thrombocytopenia and radio-ulnar synostosis: a new familial syndrome. Brit. J. Haemat. 2001; 113: 866-870.
-THOMPSON AA, NGUYEN LT. Amegakaryocytic thrombocytopenia and radio-ulnar synostosis are associated with HOXA11 mutation. Nature Genet. 2000; 26: 397-398.
-ALBERS CA, et al. Compound inheritance of a low-frequency regulatory SNP and a rare null mutation in exon-junction complex subunit RBM8A causes TAR syndrome. Nature Genetics. 2012; 44: 435-439.
-GREENHALGH KL, et al. Thrombocytopenia-absent radius syndrome: a clinical genetic study. J. Med. Genet. 2002; 39: 876-881.
-SKORKA A, et al. Thrombocytopenia-absent radius (TAR) syndrome: a case with agenesis of corpus callosum, hypoplasia of cerebellar vermis, and horseshoe kidney. Genet. Counsel. 2005; 16: 377-382.
-KAMINSKY EB, et al. An evidence-based approach to establish the functional and clinical significance of copy number variants in intellectual and developmental disabilities. Genet. Med. 2011; 13: 777-784.
-KLOPOCKI E, et al. Complex inheritance pattern resembling autosomal recessive inheritance involving a microdeletion in thrombocytopenia-absent radius syndrome. Am. J. Hum. Genet. 2007; 80: 232-240.
-LUTHY DA, et al. Prenatal ultrasound diagnosis of thrombocytopenia with absent radii. Am. J. Obstet. Gynec. 1981; 141: 350-351.
-SERI M, et al. MYH9-related disease: May-Hegglin anomaly, Sebastian syndrome, Fechtner syndrome, and Epstein syndrome are not distinct entities but represent a variable expression of a single illness. Medicine. 2003; 82: 203-215.
-RUSSELL SD, ROTH GJ. Pseudo-von Willebrand disease: a mutation in the platelet glycoprotein Ib-alpha gene associated with a hyperactive surface receptor. Blood. 1993; 81: 1787-1791.
-ENAYAT MS, et al. Distinguishing between type 2B and pseudo-von Willebrand disease and its clinical importance. Br J Haematol. 2006; 13:664–666.
-OTHMAN M. Platelet-type Von Willebrand disease: three decades in the life of a rare bleeding disorder. Blood Rev. 2011; 25: 147-153.
-FRONTROTH JP, et al. Prospective study of low-dose ristocetin-induced platelet aggregation to identify type 2B von Willebrand disease (VWD) and platelet-type VWD in children. Thromb Haemost. 2010; 104: 1158-1165.
-FRESON K, et al. Platelet characteristics in patients with X-linked macrothrombocytopenia because of a novel GATA1 mutation. Blood. 2001; 98: 85-92.
-FRESON K, et al. Different substitutions at residue D218 of the X-linked transcription factor GATA1 lead to altered clinical severity of macrothrombocytopenia and anemia and are associated with variable skewed X inactivation. Hum. Molec. Genet. 2002; 11: 147-152.
-NICHOLS KE, et al. Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA1. Nature Genet. 2000; 24: 266-270.
-MILLIKAN PD, et al. Inherited thrombocytopenia due to GATA-1 mutations. Semin. Thromb. Hemost. 2011; 37: 682-689.
-MEHAFFEY MG, et al. X-linked thrombocytopenia caused by a novel mutation of GATA-1. Blood. 2001; 98: 2681-288.
-MERSCHER S, et al. TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell. 2001; 104: 619-629.
-VAN GEET C, et al. Velocardiofacial syndrome patients with a heterozygous chromosome 22q11 deletion have giant platelets. Pediat. Res. 1998; 44: 607-611.
-CONWAY K, et al. Pulmonary agenesis: expansion of the VCFS phenotype. Am. J. Med. Genet. 2002; 113: 89-92.
-KESSLER-ICEKSON G, et al. Association of tetralogy of Fallot with a distinct region of del22q11.2. Am. J. Med. Genet. 2002; 107: 294-298.
-FITCH N. Velo-cardio-facial syndrome and eye abnormality. (Letter) Am. J. Med. Genet. 1983; 15: 669.
-WEISFELD-ADAMS JD, et al. Phenotypic heterogeneity in a family with a small atypical microduplication of chromosome 22q11.2 involving TBX1. Eur J Med Genet. 2012; 55: 732-736.
-CUNNINGHAM ML, et al. Primary pulmonary dysgenesis in velocardiofacial syndrome: a second patient. (Letter) Am. J. Med. Genet. 2003; 121A: 177-179.
-MOLSTED K, BOERS M, KJAR I. The morphology of the sella turcica in velocardiofacial syndrome suggests involvement of a neural crest developmental field. Am. J. Med. Genet. 2010; 152A: 1450-1457.
-BUTCHER NJ, et al. Functional outcomes of adults with 22q11.2 deletion syndrome. Genet. Med. 2012; 14: 836-843.
-EVERS LJM, et al. The velo-cardio-facial syndrome: the spectrum of psychiatric problems and cognitive deterioration at adult age. Genet. Counsel. 2009; 20: 307-315.
-EVERS LJM, et al. The velocardiofacial syndrome in older age: dementia and autistic features. Genet. Counsel. 2006; 17: 333-340.
- BASSETT AS, et al. Clinical features of 78 adults with 22q11 deletion syndrome. Am. J. Med. Genet. 2005; 138A: 307-313.
-JAWAD AF, et al. Immunologic features of chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). J. Pediat. 2001; 139: 715-723.
-KAWAME H, et al. Graves' disease in patients with 22q11.2 deletion. J. Pediat. 2001; 139: 892-895.
-DELIO M, et al. Enhanced maternal origin of the 22q11.2 deletion in velocardiofacial and DiGeorge syndromes. Am. J. Hum. Genet. 2013; 92: 439-47. Note: Erratum: Am. J. Hum. Genet. 92: 637 only, 2013.
-KAHR WHA, et al. Mutations in NBEAL2, encoding a BEACH protein, cause gray platelet syndrome. Nature Genet. 2011; 43: 738-740.
-DU W, et al. A second-site mutation in the initiation codon of WAS (WASP) results in expansion of subsets of lymphocytes in a Wiskott-Aldrich syndrome patient. Hum. Mutat. 2006; 27: 370-375.
-PEMBERTON LC, et al. Novel mutations in a child with congenital amegakaryocytic thrombocytopenia. (Letter) Brit. J. Haemat. 2006; 135: 742-746.
Descargas
Publicado
Número
Sección
Licencia
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).