Mutations in the reverse transcriptase that affect HIV-1

Authors

  • Charlotte Cesty Borda Faculdades Metropolitanas Unidas - FMU
  • Leandro S. Pinto
  • Erik Cendel Saenz Faculdades Metropolitanas Unidas - FMU

Keywords:

HIV, mutations, retroviruses, reverse transcriptase, antirretroviral.

Abstract

Reverse transcriptase is the main enzyme responsible for the reverse transcription process in the HIV retrovirus (human immunodeficiency virus) being the main target of research to find the best drug for the treatment of patients with this disease. The problem is the use of the antiretroviral during the therapy that can take the reverse transcriptase to generate mutations that alter its own structure, consequently the virus becomes more resistant to the action of the drugs that try to inhibit this enzyme. Mutations that affect reverse transcriptase with the highest occurrence are M184V, M184I, Y115F and Q151M and that are due to nucleotide substitution, addition or deletion failures during the transcription process. The aim of this study was to evaluate the most frequent mutations in HIV-1 reverse transcriptase and its implication in antiretroviral resistance.

Author Biography

Charlotte Cesty Borda, Faculdades Metropolitanas Unidas - FMU

 

Possuo Pós-Doc do Instituto de Ciências Biomédicas da Universidade de São Paulo, Departamento de Parasitologia, Doutorado em Biotecnologia pela Universidade de São Paulo (2007), Mestrado em Agronomia (Horticultura) pela Universidade Estadual Paulista Júlio de Mesquita Filho (2003) e graduação em Biologia pela Universidade Nacional Federico Villarreal (1999).

References

Baltimore D. RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature. 1970; 226(5252):1209–1211.

Hu WS, Hughes SH. HIV-1 reverse transcription. Cold Spring Harb Perspect Med. 2012; 2(10):37-58.

Abram ME, Ferris AL, Das K, Quinones O, Shao W, Tuske S, et al. Mutations in HIV-1 reverse transcriptase affect the errors made in a single cycle of viral replication. J. Virol. 2014; 88(13):7589-7601.

Connor RI, Ho DD. Etiology of AIDS: biology of human retroviruses. In: Devita V.T. AIDS etiology, diagnosis, treatment and prevention. Philadelphia: J.B. Lippincott Company.1992; p.13-85.

Gallo RC. Kaplan memorial lecture. The family of human lymphotropic retroviruses called HTLV: HTLV-I in adult T-cell leukemia (ATL), HTLV-II in hairy cell leukemias, and HTLV-III in AIDS. Princess Takamatsu Symp. 1984; 15:13-38.

Barre-Sinoussi F. HIV as the cause of AIDS. Lancet. 1996; 348(9019):31-35.

Jacobo-Molina A, Ding J, Nanni RG, Clark AD, Lu X, Tantillo C, et al. Crystal structure of human immunodeficiency virus type 1 reverse transcritase complexed with double-stranded DNA at 3.0 A resolution shows bent DNA. Proc Natl Acad Sci. 1993; 90(13):6320-6324.

Kohlstaedt LA, Wang J, Friedman JM, Rice PA, Steitz TA. Crystal structure at 3.5 A resolution of HIV-1 RT complexed with na inhibitor. Science. 1992; 256:1783-1790.

Warren, K, Warrilow D, Meredith L, Harrich D. Reverse Transcriptase and Cellular Factors: Regulators of HIV-1 Reverse Transcription. Viruses. 2009; 1:873-894.

Isel C, Lanchy JM, Le Grice SF, Ehresmann C, Ehresmann B, Marquet R. Specific initiation and switch to elongation of human immunodeficiency virus type 1 reverse transcription require the post-transcriptional modifications of primer tRNA3Lys. EMBO J. 1996; 15(4):917-924.

Lanchy JM, Keith G, Le Grice SF, Ehresmann B, Ehresmann C, Marquet R. Contacts between reverse transcriptase and the primer strand govern the transition from initiation to elongation of HIV-1 reverse transcription. J Biol Chem. 1998; 273:24425–24432.

Booth, S.J. Microbiology Pearls of Wisdom. 2 ed. Boston: Boston Medical Publishing Corp; 2000. 290p.

Snustad DP, Simmons MJ. Fundamentos de Genética. 2 ed. Rio de Janeiro: Guanabara Koogan; 2001. 756p.

Charneau P, Alizon M, Clavel FM. A second origin of DNA plus-strand synthesis is required for optimal human immunodeficiency virus replication. J Virol. 1992; 66(5):2814-2820.

Hungnes O, Tjotta E, Grinde B. Mutations in the central polypurine tract of HIV-1 result in delayed replication. Virology. 1992; 190:440-442.

Coffin JM. HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science. 1995; 267:483-489.

Kunkel TA, Bebenek K, Roberts JD, Fitzgerald MP, Thomas DC. Analysis of fidelity mechanisms with eukaryotic DNA-replication and repair proteins. Genome, 1989; 31(1):100-103.

Weil PA. A Sí­ntese de Proteí­na e o código genético. In: Murray RK, Bender DA, Botham KM, Kennelly PJ, Rodwell VW, Weil PA . Bioquí­mica ilustrada de Harper. 29. ed. Porto Alegre: AMGH; 2013. p.395-410.

Diaz RS. Guia para o manuseio de resistência antirretroviral. 3 ed. São Paulo: Permanyer Brasil Publicações; 2011. 231p.

Gu Z, Gao Q, Li X, Parniak MA, Wainberg MA. Novel mutation in the human immunodeficiency virus type 1 reverse transcriptase gene that encodes cross-resistance to 2',3'-dideoxyinosine and 2',3'-dideoxycytidine. J Virol. 1992; 66(12):7128-7135.

Boucher CA, Cammack N, Schipper P, Schuurman R, Rouse P, Wainberg MA, et al. High-level resistance to (-) enantiomeric 2'-deoxy-3'-thiacytidine in vitro is due to one amino acid substitution in the catalytic site of human immunodeficiency virus type 1 reverse transcriptase. Antimicrob Agents Chemother. 1993; 37(10):2231-2234.

Huang H, Chopra R, Verdine GL, Harrison SC. Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science. 1998; 282:1669-1675.

Gao HQ, Boyer PL, Sarafianos SG, Arnold E, Hughes SH. The role of steric hindrance in 3TC resistance of human immunodeficiency virus type-1 reverse transcriptase. J. Mol. Biol. 2000; 300:403-418.

Miller V, Ait-Khaled M, Stone C, Griffin P, Mesogiti D, Cutrell A, et al. HIV-1 reverse transcriptase (RT) genotype and susceptibility to RT inhibitors during abacavir monotherapy and combination therapy. AIDS. 2000;14:163-171.

Wainberg M. The impact of the M184V substitution on drug resistance and viral fitness. Expert Rev Anti Infect Ther. 2004; 2:147-151.

Boyer PL, Hughes SH. Effects of amino acid substituitions at position 115 on the fidelity of human immunodeficiency virus type 1 reverse transcriptase. J Virol. 2000; 74(14):6494-6500.

Ray AS, Basavapathruni A, Anderson KS. Mechanistic studies to understand the progressive development of resistance in human immunodeficiency virus type 1 reverse transcriptase to abacavir. J. Biol. Chem. 2002; 277:40479–40490.

Harrigan PR, Stone C, Griffin P, Najera I, Bloor S, Kemp S, et al. Resistance profile of the human immunodeficiency virus type 1 reverse transcriptase inhibitor abacavir (1592U89) after monotherapy and combination therapy.J. Infect. Dis. 2000; 181:912-920.

Boyer PL, Clark PK, Hughes SH. HIV-1 and HIV-2 reverse transcriptases:different mechanisms of resistance to nucleoside reverse transcriptase inhibitors. J. Virol. 2012; 86:5885-5894.

Iversen AK, Shafer RW, Wehrly K, Winters MA, Mullins JI, Chesebro B, et al. Multidrug-resistant human immunodeficiency virus type 1 strains resulting from combination antiretroviral therapy. J. Virol. 1996; 70:1086-1090.

Ueno T, Shirasaka T, Mitsuya H. Enzymatic characterization of human immunodeficiency virus type 1 reverse transcriptase resistant to multiple 2=,3= dideoxynucleoside 5=-triphosphates. J. Biol. Chem. 1995; 270:23605-23611.

Deval J, Selmi B, Boretto J, Egloff MP, Guerreiro C, Sarfati S, et al. The molecular mechanism of multidrug resistance by the Q151M human immunodeficiency virus type 1 reverse transcriptase and its suppression using alpha-boranophosphate nucleotide analogues. J. Biol. Chem. 2002; 277:42097-42104.

Published

2017-06-28

Issue

Section

Artigo Teórico