Mutações Na Transcriptase Reversa Que Afetam o HIV-1

Charlotte Cesty Borda, Leandro S. Pinto, Erik Cendel Saenz

Resumo


A transcriptase reversa é a principal enzima responsável pelo processo de transcrição reversa presente no retrovírus HIV (vírus da imunodeficiência humana) e vem sendo o principal alvo de pesquisas para descobrir qual droga tem melhor ação para o tratamento de pacientes que apresentam esta doença. O problema é o uso do antirretroviral durante a terapia que pode levar a transcriptase reversa a gerar mutações que alteram a sua própria estrutura, como consequência o vírus torna-se mais resistente à ação dos medicamentos que tentam inibir esta enzima. Existem diversas mutações que podem acometer a transcriptase, algumas têm maior ocorrência como é o caso da M184V, M184I, Y115F e Q151M e que são decorrentes de falhas por substituição, adição ou deleção de nucleotídeos durante o processo de transcrição.


Palavras-chave


HIV; mutações; retrovírus; transcriptase reversa; antirretroviral

Texto completo:

PDF

Referências


Baltimore D. RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature. 1970; 226(5252):1209–1211.

Hu WS, Hughes SH. HIV-1 reverse transcription. Cold Spring Harb Perspect Med. 2012; 2(10):37-58.

Abram ME, Ferris AL, Das K, Quinones O, Shao W, Tuske S, et al. Mutations in HIV-1 reverse transcriptase affect the errors made in a single cycle of viral replication. J. Virol. 2014; 88(13):7589-7601.

Connor RI, Ho DD. Etiology of AIDS: biology of human retroviruses. In: Devita V.T. AIDS etiology, diagnosis, treatment and prevention. Philadelphia: J.B. Lippincott Company.1992; p.13-85.

Gallo RC. Kaplan memorial lecture. The family of human lymphotropic retroviruses called HTLV: HTLV-I in adult T-cell leukemia (ATL), HTLV-II in hairy cell leukemias, and HTLV-III in AIDS. Princess Takamatsu Symp. 1984; 15:13-38.

Barre-Sinoussi F. HIV as the cause of AIDS. Lancet. 1996; 348(9019):31-35.

Jacobo-Molina A, Ding J, Nanni RG, Clark AD, Lu X, Tantillo C, et al. Crystal structure of human immunodeficiency virus type 1 reverse transcritase complexed with double-stranded DNA at 3.0 A resolution shows bent DNA. Proc Natl Acad Sci. 1993; 90(13):6320-6324.

Kohlstaedt LA, Wang J, Friedman JM, Rice PA, Steitz TA. Crystal structure at 3.5 A resolution of HIV-1 RT complexed with na inhibitor. Science. 1992; 256:1783-1790.

Warren, K, Warrilow D, Meredith L, Harrich D. Reverse Transcriptase and Cellular Factors: Regulators of HIV-1 Reverse Transcription. Viruses. 2009; 1:873-894.

Isel C, Lanchy JM, Le Grice SF, Ehresmann C, Ehresmann B, Marquet R. Specific initiation and switch to elongation of human immunodeficiency virus type 1 reverse transcription require the post-transcriptional modifications of primer tRNA3Lys. EMBO J. 1996; 15(4):917-924.

Lanchy JM, Keith G, Le Grice SF, Ehresmann B, Ehresmann C, Marquet R. Contacts between reverse transcriptase and the primer strand govern the transition from initiation to elongation of HIV-1 reverse transcription. J Biol Chem. 1998; 273:24425–24432.

Booth, S.J. Microbiology Pearls of Wisdom. 2 ed. Boston: Boston Medical Publishing Corp; 2000. 290p.

Snustad DP, Simmons MJ. Fundamentos de Genética. 2 ed. Rio de Janeiro: Guanabara Koogan; 2001. 756p.

Charneau P, Alizon M, Clavel FM. A second origin of DNA plus-strand synthesis is required for optimal human immunodeficiency virus replication. J Virol. 1992; 66(5):2814-2820.

Hungnes O, Tjotta E, Grinde B. Mutations in the central polypurine tract of HIV-1 result in delayed replication. Virology. 1992; 190:440-442.

Coffin JM. HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science. 1995; 267:483-489.

Kunkel TA, Bebenek K, Roberts JD, Fitzgerald MP, Thomas DC. Analysis of fidelity mechanisms with eukaryotic DNA-replication and repair proteins. Genome, 1989; 31(1):100-103.

Weil PA. A Síntese de Proteína e o código genético. In: Murray RK, Bender DA, Botham KM, Kennelly PJ, Rodwell VW, Weil PA . Bioquímica ilustrada de Harper. 29. ed. Porto Alegre: AMGH; 2013. p.395-410.

Diaz RS. Guia para o manuseio de resistência antirretroviral. 3 ed. São Paulo: Permanyer Brasil Publicações; 2011. 231p.

Gu Z, Gao Q, Li X, Parniak MA, Wainberg MA. Novel mutation in the human immunodeficiency virus type 1 reverse transcriptase gene that encodes cross-resistance to 2',3'-dideoxyinosine and 2',3'-dideoxycytidine. J Virol. 1992; 66(12):7128-7135.

Boucher CA, Cammack N, Schipper P, Schuurman R, Rouse P, Wainberg MA, et al. High-level resistance to (-) enantiomeric 2'-deoxy-3'-thiacytidine in vitro is due to one amino acid substitution in the catalytic site of human immunodeficiency virus type 1 reverse transcriptase. Antimicrob Agents Chemother. 1993; 37(10):2231-2234.

Huang H, Chopra R, Verdine GL, Harrison SC. Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science. 1998; 282:1669-1675.

Gao HQ, Boyer PL, Sarafianos SG, Arnold E, Hughes SH. The role of steric hindrance in 3TC resistance of human immunodeficiency virus type-1 reverse transcriptase. J. Mol. Biol. 2000; 300:403-418.

Miller V, Ait-Khaled M, Stone C, Griffin P, Mesogiti D, Cutrell A, et al. HIV-1 reverse transcriptase (RT) genotype and susceptibility to RT inhibitors during abacavir monotherapy and combination therapy. AIDS. 2000;14:163-171.

Wainberg M. The impact of the M184V substitution on drug resistance and viral fitness. Expert Rev Anti Infect Ther. 2004; 2:147-151.

Boyer PL, Hughes SH. Effects of amino acid substituitions at position 115 on the fidelity of human immunodeficiency virus type 1 reverse transcriptase. J Virol. 2000; 74(14):6494-6500.

Ray AS, Basavapathruni A, Anderson KS. Mechanistic studies to understand the progressive development of resistance in human immunodeficiency virus type 1 reverse transcriptase to abacavir. J. Biol. Chem. 2002; 277:40479–40490.

Harrigan PR, Stone C, Griffin P, Najera I, Bloor S, Kemp S, et al. Resistance profile of the human immunodeficiency virus type 1 reverse transcriptase inhibitor abacavir (1592U89) after monotherapy and combination therapy.J. Infect. Dis. 2000; 181:912-920.

Boyer PL, Clark PK, Hughes SH. HIV-1 and HIV-2 reverse transcriptases:different mechanisms of resistance to nucleoside reverse transcriptase inhibitors. J. Virol. 2012; 86:5885-5894.

Iversen AK, Shafer RW, Wehrly K, Winters MA, Mullins JI, Chesebro B, et al. Multidrug-resistant human immunodeficiency virus type 1 strains resulting from combination antiretroviral therapy. J. Virol. 1996; 70:1086-1090.

Ueno T, Shirasaka T, Mitsuya H. Enzymatic characterization of human immunodeficiency virus type 1 reverse transcriptase resistant to multiple 2=,3= dideoxynucleoside 5=-triphosphates. J. Biol. Chem. 1995; 270:23605-23611.

Deval J, Selmi B, Boretto J, Egloff MP, Guerreiro C, Sarfati S, et al. The molecular mechanism of multidrug resistance by the Q151M human immunodeficiency virus type 1 reverse transcriptase and its suppression using alpha-boranophosphate nucleotide analogues. J. Biol. Chem. 2002; 277:42097-42104.


Apontamentos

  • Não há apontamentos.


Direitos autorais 2017 Charlotte Cesty Borda, Leandro S. Pinto

Licença Creative Commons
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional.

 

 

Indexadores: Sumários.org | Diadorim | REDIB