Proposta de critérios de avaliação ambiental de conceitos de produtos fí­sicos

Autores

  • Marcelo Ruy Universidade Federal de Uberlândia Faculdade de Gestão e Negócios
  • Dário Henrique Alliprandini FEI - Centro Universitário Programa de Pós-graduação em Engenharia Mecânica Departamento de Engenharia de Produção

Palavras-chave:

Projeto Conceitual, Avaliação Ambiental de Conceitos, DfE, Ecodesign.

Resumo

O objetivo do trabalho é propor critérios de avaliação ambiental de conceitos de produtos fí­sicos (bens). A proposta foi desenvolvida em duas etapas. Inicialmente, por meio de uma pesquisa teórico-conceitual, criou-se uma hierarquia de critérios ambientais a ser utilizada com métodos existentes de seleção de conceitos. Na segunda etapa a proposta foi avaliada tanto do ponto de vista de requisitos teóricos, quanto relativamente a seu potencial de utilidade prática por meio de entrevistas semiestruturadas com especialistas. A proposta concebida contribui para ampliar o portfólio de métodos para o desenvolvimento de produtos ambientalmente responsáveis.

Biografia do Autor

Marcelo Ruy, Universidade Federal de Uberlândia Faculdade de Gestão e Negócios

Doutor em Engenharia de Produção pela Universidade Federal de São Carlos, Brasil

Dário Henrique Alliprandini, FEI - Centro Universitário Programa de Pós-graduação em Engenharia Mecânica Departamento de Engenharia de Produção

Doutor em Engenharia Mecânica pela Escola de Engenharia de São Carlos

Referências

Bernstein, W., Ramanujan, D., Devnathan, S., Zhao, F., Ramani, K., & Sutherland, J. (2010).

Development of a framework for sustainable conceptual design. Proceedings of 17th CIRP International Conference on Life Cycle Engineering, LCE2010, China, 242–247.

Boks, C. (2006). The soft side of ecodesign. Journal of Cleaner Production, 14(15), 1346-1356.

Borchardt, M., Wendt, M. H., Pereira, G. M., & Sellitto, M. A. (2011). Redesign of a component based on eco-design practices: environmental impact and cost reduction achievements. Journal of Cleaner Production, 19(1), 49–57.

Bovea, M. D., & Pérez-Belis, V. (2012). A taxonomy of eco-design tools for integrating environmental requirements into the product design process. Journal of Cleaner Production, 20(1), 61–71.

Choia, J. K., Niesb, L. F., & Ramanic, K. (2008). A framework for the integration of environmental and business aspects toward sustainable product development. Journal of Engineering Design, 19(5), 431–446.

Crul, M. R. M., & Diehl, J. C. (2006). Design for sustainability: a practical approach for developing economies. Paris: UNEP Division of Technology, Industry, and Economics.

Devanathan, S., Ramanujan, D., Bernstein, W. Z., Zhao, F., & Ramani, K. (2010). Integration of sustainability into early design through the function impact matrix. Journal of Mechanical Design, 132(8), 081004-1–081004-8.

Ellram, L. M., Tate, W., & Carter, C. R. (2008). Applying 3DCE to environmentally responsible manufacturing practices. Journal of Cleaner Production, 16(15), 1620-1631.

Fiksel, J. (2009). Design for environment: a guide to sustainable product development (2nd ed.). New York: Mc Graw Hill.

Fitzgerald, D. P., Herrmann, J. W., & Schmidt, L. C. (2010). A conceptual design tool for resolving conflicts between product functionality and environmental impact. Journal of Mechanical Design, 132(9), 091006-1–091006-11.

Giudice, F., Rosa, G. la, & Risitano, A. (2006). Product design for the environment: a life cycle approach. Florida: CRC Press.

Goodwin, P., & Wright, G. (2004). Decision analysis for management judgment (3rd ed.). West Sussex: John Wiley & Sons.

Graedel, T. E., & Allenby, B. R. (1998). Design for environment. Upper Saddle River: Prentice Hall.

Gremyr, I., Siva, V., Raharjo, H., & Goh, T. N. (2014). Adapting the robust design methodology to support sustainable product development. Journal of Cleaner Production, 79, 231–238.

Hart, S. L. (1995). A natural-resource-based view of the firm. The Academy of Management Review, 20(4), 986–1014.

Kengpol, A., & Boonkanit, P. (2011). The decision support framework for developing eco-design at conceptual phase based upon ISO/TR14062. International Journal of Production Economics, 131(1), 4–14.

Keoleian, G. A., & Menerey, D. (1993). Life cycle design guidance manual: environmental requirements and the product system (EPA/600/R-92/226), U.S. Environmental Protection Agency, Office of Research and Development, Washington, D.C.

Klöpffer, W. (2003). Life-cycle based methods for sustainable product development. International Journal of Life Cycle Assessment, 8(3), 157–159.

Klöpffer, W. (2008). Life cycle sustainability assessment of products (with Comments by Helias A. Udo de Haes p.95). International Journal of Life Cycle Assessment, 13(2), 89–94.

Knight, P., & Jenkins, J. O. (2009). Adopting and applying eco-design techniques: a practitioners perspective. Journal of Cleaner Production, 17(5), 549–558.

Labuschagne, C., & Brent, A. C. (2005). Sustainable project life cycle management: the need to integrate life cycles in the manufacturing sector.International Journal of Project Management, 23(2), 159-168.

Lee, K. M., & Park, P. J. (2005). Ecodesign: best practice of ISO/TR 14062. Korea: Eco-product Research Institute (ERI), Ajou University.

Lofthouse, V. (2006). Ecodesign tools for designers: defining the requirements. Journal of Cleaner Production, 14(15–16), 1386–1395.

Lootsma, F. A. (1999). Multi-criteria decision analysis via ratio and difference judgment. Dordrecht: Kluwer Academic Publishers.

Luttropp, C., & Lagerstedt, J. (2006). EcoDesign and The Ten Golden Rules: generic advice for merging environmental aspects into product development.Journal of Cleaner Production, 14(15), 1396-1408.

Mascle, C., & Zhao, H. P. (2008). Integrating environmental consciousness in product/process development based on life-cycle thinking. International Journal of Production Economics, 112(1), 5-17.

Maxwell, D., & Van der Vorst, R. (2003). Developing sustainable products and services. Journal of Cleaner Production, 11(8), 883-895.

Miguel, P. A. C. (2004). An investigation of qualitative research in an industrial engineering post graduate program. Anais do XI Simpósio de Engenharia de Produção, Bauru, SP, Brasil. Miguel, P. A. C. (2007). Estudo de caso na engenharia de produção: estruturação e recomendações para sua condução. Produção, 17(1), 216–229.

Millet, D., Bistagnino, L., Lanzavecchia, C., Camous, R., & Poldma, T. (2007). Does the potential of the use of LCA match the design team needs? Journal of Cleaner Production, 15(4), 335–346.

Poudelet, V., Chayer, J. A., Margni, M., Pellerin, R., & Samson, R. (2012). A process-based approach to operationalize life cycle assessment through the development of an eco-design decision-support system. Journal of Cleaner Production, 33, 192-201.

Rebitzer, G., & Hunkeler, D. (2003). Life cycle costing in LCM: ambitions, opportunities, and limitations. International Journal of Life Cycle Assessment, 8(5), 253–256.

Ramani, K., Ramanujan, D., Bernstein, W. Z., Zhao, F., Sutherland, J., Handwerker, C., Choi, J.-K.;

Kim, H., & Thurston, D. (2010). Integrated sustainable life cycle design: a review. Journal of Mechanical Design, 132(9), 091004-1–091004-15.

Ramanujan, D., Bernstein, W. Z., Choi, J.-K., Koho, M., Zhao, F., & Ramani, K. (2014).

Prioritizing design for environment strategies using a stochastic analytic hierarchy process. Journal of Mechanical Design, 136(7), 071002-1–071002-10.

Telenko, C., Seepersad, C. C.; & Webber, M. E. (2008). A compilation of design for environment principles and guidelines. Proceedings of the ASME Design Engineering Technical Conference, Brooklyn, NY, USA, 289–301.

Telenko, C., & Seepersad, C. C. (2010). A methodology for identifying environmentally conscious guidelines for product design. Journal of Mechanical Design, 132(9), 091009-1–091009-9.

Thompson, B. S. (1999). Environmentally-sensitive design: Leonardo WAS right!. Materials & design, 20(1), 23-30.

Vargas Hernandez, N., Okudan Kremer, G., Schmidt, L. C., & Acosta Herrera, P. R. (2012). Development of an expert system to aid engineers in the selection of design for environment methods and tools. Expert Systems with Applications, 39(10), 9543–9553.

Vernadat, F. B. Enterprise modeling and integration: principles and applications. London: Chapman & Hall, 1996.

Vezzoli, C., & Manzini, E. (2008). Design for environmental sustainability. London: SpringerVerlag.

Wimmer, W., & Züst, R. (2003). Ecodesign Pilot: product investigation, learning and optimization tool for sustainable product development (with CD-ROM). New York: Kluwer Academic Publishers.

Züst, R. (2002). Decision support for planning ecoeffective product systems. In: Hundal, M. S. (Ed.). Mechanical life cycle handbook: good environmental design and manufacturing (Vol. 1, Chap. 8, pp. 177–198). New York: Marcel Dekker, Inc.

Downloads

Publicado

2015-12-04

Como Citar

RUY, M.; ALLIPRANDINI, D. H. Proposta de critérios de avaliação ambiental de conceitos de produtos fí­sicos. Revista Metropolitana de Sustentabilidade (ISSN 2318-3233), São Paulo, v. 5, n. 3, p. 81–103, 2015. Disponível em: https://revistaseletronicas.fmu.br/index.php/rms/article/view/673. Acesso em: 9 set. 2024.