BIBLIOMETRIC ANALYSIS OF AIRBORNE WIND ENERGY RESEARCH AND WIND SPEED ANALYSIS
Palavras-chave:
Airborne wind energy, Wind speed analysis, bibliometrics analysis.Resumo
This article describes the contribution of researchers around the world about Airborne wind energy and Wind Speed analysis from 1945 to 2018. Airborne wind energy systems are devices that extract electricity from the wind stream and convert it into electricity. With the purpose of analyzing airborne wind energy systems, understand the wind, and the methods used to analyze wind speed, this research used a bibliometric approach. To analyze the scientific publications in this field of research, the Web of Science database was used with documents indexed by the Science Citation Index Extended, Social Sciences Citation Index and Conference Proceedings Citation Index-Science. It was possible to verify the main authors, research institutions, journals and countries that publish on the subject, the most cited documents and collaboration networks. It was identified that the first scientific publication on wind speed analysis occurred in 1984 by the authors Tuller, S.E. and Brett, A.C. The results indicate that the USA, Switzerland, Belgium, Germany, Italy, Netherlands, Peoples R China, Ireland, Scotland and the Brazil are the leading countries in the research on Airborne wind energy and Wind Speed analysis. The most productive author, journal, and research institution are Lorenzo Fagiano, Proceedings of the American Control Conference and the American Control Conference, both with 18 articles published and the research institution was Katholieke University Leuven. It was also possible to identify the main methods used by the authors to analyze wind speed.Â
Referências
Ahrens, U., Diehl, M., Schmehl, R., et al (2014). Airborne Wind Energy. Springer-Verlag Berlin Heidelberg, London.
Archer, C. L., Caldeira, K. (2009). Global assessment of high-altitude wind power. Energies 2, 307–319. URL http://www.mdpi.com/1996-1073/2/2/307.
Archer, C. L., Delle, M. L., Rife, D. L., et al (2014). Airborne wind energy: Optimal locations and variability. Renewable Energy 64, 180 – 186.
Archer, C. L., Jacobson, M. Z. (2005). Evaluation of global wind power. Journal of Geophysical Research 110 (D12). URL http://doi.wiley.com/10.1029/2004JD005462.
Aziz, M., Reising, S., Asher, W., Rose, L., Gaiser, P., Horgan, K., et al (2005). Effects of air-sea enteraction parameters on ocean surface microwave emission at 10 and 37 GHz. IEEE Transactions On Geoscience And Remote Sensing. 43 (8), 1763–1774.
Bagiorgas, H. S., Giouli, M., Rehman, S., Al-Hadhrami, L. M., et al (2011). Weibull parameters estimation using four different methods and most energy-carrying wind speed analysis. International Journal Of Green Energy 8 (5), 529–554.
Beegum, S. N., Moorthy, K. K., Babu, S. S., Reddy, R. R., Gopal, K. R., et al (2009). Large scale modulations of spectral aerosol optical depths by atmospheric planetary waves. Geophysical Research Letters, 36.
Bivona, S., Burlon, R., Leone, C., et al (2003). Hourly wind speed analysis in sicily. Renewable Energy 28 (9), 1371–1385.
Burton, T., Sharpe, D., Jenkins, N., Bossanyi, E., et al (2002). Wind energy handbook. Vol. 2nd ed.
Cabello, M., Orza, J. A. G. (2010). Wind speed analysis in the province of alicante, spain. potential for small-scale wind turbines. Renewable & Sustainable Energy Reviews 14 (9), 3185–3191.
Canale, M., Fagiano, L., Milanese, M., et al (2009). Kitegen: A revolution in wind energy generation. Energy 34, 355–361.
Chadegani, A. A., Salehi, H., Yunus, M. M., Farhadi, H., Fooladi, M., Farhadi, M., Ebrahim, N. A., et al (2013). A comparison between two main academic literature collections: Web of science and scopus databases. Asian Social Science 9 (5), 18–26.
Chang, T. P. (2011). Performance comparison of six numerical methods in estimating weibull parameters for wind energy application. Applied Energy (88), 272–282.
Chen, W., Liu, W., Geng, Y., Brown, M. T., Gao, C., Wu, R., et al (2017). Recent progress on emergy research: A bibliometric analysis. Renewable & Sustainable Energy Reviews, 73, 1051-1060.
Cherubini, A., Papini, A., Vertechy, R., Fontana, M., et al (2015). Airborne wind energy systems: A review of the technologies. Renewable and Sustainable Energy Reviews (51), 1461-1476.
De Lellis, M., Mendonça, A. K., Saraiva, R., Trofino, A., Lezana, A., et al (2016). Electric power generation in wind farms with pumping kites: An economical analysis. Renewable Energy 86, 163 -172.
Diaf, S., Notton, G. (2013). Evaluation of electricity generation and energy cost of wind energy conversion systems in southern algeria. Renewable and Sustainable Energy Review (23), 379 -390.
Diehl, M. (2014). Airborne wind energy: Basic concepts and physical foundations. In: Ahrens, U., Diehl, M., Schmehl, R. (Eds.), Airborne Wind Energy. Springer, London, Ch. 5, pp. 3–22.
Du, H., Li, N., Brown, M. A., Peng, Y., Shuai, Y., et al (2014). A bibliographic analysis of recent solar energy literatures: The expansion and evolution of a research field. Renewable Energy 66, 696 – 706.
Fagiano, L. (2009). Control of tethered airfoils for high-altitude wind energy generation. Ph.D. thesis, Politecnico di Torino, Torino, Italy.
Fagiano, L., Milanese, M., Piga, D., et al. (2012). Optimization of airborne wind energy generators. International Journal of Robust and Nonlinear Control 22 (18), 2055–2083.
Fechner, U., van der Vlugt, R., Schreuder, E., Schmehl, R., et al. (2015). Dynamic model of a pumping kite power system. Renewable Energy 83, 705 - 716.
Foley, A. M., Leahy, P. G., Marvuglia, A., McKeogh, E. J., et al. (2012). Current methods and advances in forecasting of wind power generation. Renewable Energy 37 (1), 8.
Gros, S., Zanon, M., Diehl, M., et al. (2012). Orbit control for a power generating airfoil based on nonlinear mpc. In: 2012 American Control Conference (ACC). Proceedings of the American Control Conference. IEEE, pp. 137-142.
GWEC (2017). Global wind statistic 2017.
Hassan, S.U., Haddawy, P., Zhu, J., et al. (2014). A bibliometric study of the world"™s research activity in sustainable development and its sub-areas using cientific literature. Scientometrics 99 (2), 549-579.
Houska, B. (2007). Robustness and stability optimization of open-loop controlled power generating kites. Ph.D. thesis, Doctor Thesis in Ruprecht-Karls-Universität, Heidelberg, Alemanha.
Imran, M., Haglind, F., Asim, M., Alvi, J. Z., et al. (2018). Recent research trends in organic Rankine cycle technology: A bibliometric approach. Renewable & Sustainable Energy Reviews, 81 (1), 552-562.
Jacobs, D. (2010). Demystification of bibliometrics, scientometrics, informetrics and webometrics. 11th DIS Annual Conference 2010, Richardsbay, University of Zululand, South Africa, 1 - 20.
Jaramillo, O. A., Borja, M. (2004). Wind speed analysis in la ventosa, mexico: a bimodal probability distribution case. Renewable Energy 29 (10), 1613 - 1630.
Kako, S., Okuro, A., Kubota, M., et al. (2017). Effectiveness of using multisatellite wind speed estimates to construct hourly wind speed datasets with diurnal variations. Journal of Atmospheric and Oceanic Technology 34 (3), 631 - 642.
Kantar, Y. M., Usta, I., Arik, I., Yenilmez, I. , et al. (2018). Wind speed analysis using the extended generalized lindley distribution. Renewable Energy 118, 1024 -1030.
Leeuwen, T. V. (2006). The application of bibliometric analyses in the evaluation of social science research. Who benefits from it, and why it is still feasible. Scientometrics 66 (1), 133 -154.
Leeuwen, T. V., Costas, R., Medina, C. C., Visser, M., et al. (2013). The role of editorial material in bibliometric research performance assessments. Scientometrics 95, 817 - 826.
Li, F., Chen, P., Yang, J., Guan, L., et al. (2013). Guishan off-shore wind power farm interconnection: A real project study. In: 2013 IEEE Pes Asia-Pacific Power And Energy Engineering Conference (APPEEC).
Li, J., Wang, M.H., Ho, Y.S., et al. (2011). Trends in research on global climate change: A Science Citation Index Expanded-based analysis. Global and planetary change 77 (1-2), 13 - 20.
Lima, L. A., Bezerra Filho, C. R., et al. (2012). Wind resource evaluation in São João do Cariri (SJC): Paraiba, Brazil. Renewable and Sustainable Energy Review (16), 474 - 480.
Lopes, P., Biazeto, B., Moreira, D. S., Silva, D. P. L., et al. (2004(. Previsão do tempo regional no laboratório MASTER. XIII Congresso Brasileiro de Meteorologia. Fortaleza, CE.
Loyd, M. (1980). Crosswind kite power. Journal of Energy 4 (3), 106 -111.
Lynch, C., OMahony, M. J., Scully, T., et al. (2014). Simplified method to derive the Kalman Filter covariance matrices to predict wind speeds from a NWP model. In: Howlett, R. (Ed.), 6TH International Conference on Sustainability in Energy and Buildings. Vol. 62 of Energy Procedia. Elsevier Ltd, Cardiff, Wales. pp. 676–685.
Mahmoudian, B., Mohammadzadeh, M. (2014). A spatio-temporal dynamic regression model for extreme wind speeds. Extremes 17 (2), 221–245.
Makani, P. (2015). Airborne wind turbines. URL http://www.google.com/makani/solution.
Manwell, J. F., McGowan, J. G., Rogers, A. L., et al. (2009). Wind Energy Explained: Theory, Design and Application, 2nd Edition. John Wiley and Sons, Chichester, UK.
Mendonça, A. K. S., Vaz, C. R., Lezana, A. R. G., Anacleto, C. A., Paladini, E. P., et al. (2017). Comparing patent and scientific literature in airborne wind energy. Sustainability 9, 915 -937.
Mishra, S. P., Kumar, A. (2015). Application of brushless excitation system in wind power generation. In: 2015 International Conference on Renewable Energy Research and Applications (ICRERA). International Conference on Renewable Energy Research and Applications. IEEE, Palermo, Italy, pp. 104 -108.
Moreira, D. S., Silva Dias, P. L., Lucio, P. S., et al. (2006). Sistema de avaliação estatística de modelos numéricos de previso do tempo. XIV Congresso Brasileiro de Meteorologia.
Novara, C., Fagiano, L., Milanese, M., et al. (2013)a. Direct feedback control design for nonlinear systems. Automatica 49, 849–860.
Novara, C., Fagiano, L., Milanese, M., et al. (2013)b. Direct feedback control design for nonlinear systems. Automatica 49 (4), 849–860.
Ockels, W. (2001). Laddermill, a novel concept to exploit the energy in the airspace. Aircraft Design 4, 81–97.
Perez, I. A., Garcia, M. A., Sanchez, M. L., Torre, B., et al. (2004). Analysis of height variations of sodar-derived wind speeds in northern Spain. Journal Of Wind Engineering And Industrial Aerodynamics 92 (10), 875–894.
Pishgar-Komleh, S. H., Akram, A. (2017). Evaluation of wind energy potential for different turbine models based on the wind speed data of Zabol region, Iran. Sustainable Energy Technologies and Assessments 22, 34 - 40.
Pishgar-Komleh, S. H., Keyhani, A., Sefeedpari, P., et al. (2015). Wind speed and power density analysis based on Weibull and Rayleigh distributions (a case study: Firouzkooh county of Iran) Renewable & Sustainable Energy Reviews 42, 313 - 322.
Rajapaksha, K. W. G. D. H., Perera, K. (2016). Wind speed analysis and energy calculation based on mixture distributions in narakkalliya, sri lanka. Journal of The National Science Foundation of Sri Lanka 44 (4), 409–416.
Razali, A. M., Sapuan, M. S., Ibrahim, K., Zaharim, A., Sopian, K., et al. (2010). Mapping of annual extreme wind speed analysis from 12 stations in peninsular malaysia. International Conference on System Science and Simulation in Engineering-Proceedings. -, Iwate, Japan, pp. 397+.
Rehman, S. (2013). Long-term wind speed analysis and detection of its trends using mann-kendall test and linear regression method. Arabian Journal for Science and Engineering 38 (2), 421–437.
Schmehl, R. (2018). In: Schmehl, R. (Ed.), Airborne Wind Energy -Advances in Technology Development and Research. Springer-Verlag Berlin Heidelberg, London, Ch. Preface, pp. xi–xiv. URL https://doi.org/10.1007/978-981-10-1947-0
Scoon, A., Robinson, I. (2000). Meteorological and oceanographic surface roughness phenomena in the english channel investigated usingers synthetic aperture radar and an empirical model of backscatter. Journal of Geophysical Research-Oceans 105 (C3), 6469–6482.
Sequoia (2014). Patents and research. Tech. rep., Sequoia. URL :http://www.sequoia.it/en/brevetti.htm.
Stull, R. B. (2000). Meteorology for scientists and engineers. Vol. 2nd ed. Tompson Learning, USA, pp. 704 - 715.
Thompson, R. (2008). Whitepaper using bibliometrics: A guide to evaluating research performance with citation data. Thomson Reuters 35, 1-12.
Tuller, S. E., Brett, A. C. (1984). The characteristics of wind velocity that favor the fitting of a weibull distribution in wind-speed analysis. Journal Of Climate And Applied Meteorology 23 (1), 124–134.
Van, N., Fagiano, L., Schnez, S., et al. (2016). On the autonomous take-off and landing of tethered wings for airborne wind energy. In: 2016 American Control Conference (ACC). Proceedings of the American Control Conference. pp. 4077- 4082, american Control Conference (ACC), Boston.
Wagemann, J., Ties, B., Rollenbeck, R., Peters, T., Bendix, J., et al. (2015). Regionalization of wind-speed data to analyse tree-line wind conditions in the eastern andes of southern ecuador. ERDKUNDE 69 (1), 3-19.
Wilson, W. J., Morcos, M. M. (2006). Design of an offshore wind farm on lake michigan: Part 1. In: 2006 38Th Annual North American Power Symposium, NAPS-2006 Proceedings. North American Power Symposium. IEEE, Carbondale, IL, USA, pp. 597+.
Xu, X. K., Levy, J. K. (2011). Analyzing potential evapotranspiration and climate drivers in china. Chinese Journal Of Geophysics-Chinese Edition 54 (3), 634 - 642.
Zanon, M., Gros, S., Diehl, M., et al. (2013). Rotational start-up of tethered air- planes based on nonlinear mpc and mhe. In: 2013 European Control Conference (ECC). European Control Conference (ECC), Zurich, Swirzerland, pp. 1023 -1028.
Zanon, M., Gros, S., Meyers, J., Diehl, M., et al. (2014). Airborne wind energy: Airfoil-airmass interaction. IFAC Papersonline. 47 (3), 5814 - 5819, 19th World Congress of the International-Federation-of-Automatic-Control (IFAC), Cape Town, South Africa, 24-29.
Zgraggen, A. U., Fagiano, L., Morari, M., et al. (2013). On real-time optimization of airborne wind energy generators. In: 2013 52nd IEEE Annual Conference on Decision and Control (CDC). IEEE Conference on Decision and Control, Florence, Italy, pp. 385–390.
Zgraggen, A. U., Fagiano, L., Morari, M., et al. (2015). Real-time optimization and adaptation of the crosswind flight of tethered wings for airborne wind energy. IEEE Transactions on Control Systems Technology 23 (2), 434-448.
Zheng, Z. W., Chen, Y. Y., Huo, M. M., Zhao, B., et al. (2011). An overview: the development of prediction technology of wind and photovoltaic power generation. Vol. 12. Elsevier Ltd, Chengdu, China.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
- O(s) autor(es) autoriza(m) a publicação do artigo na revista;
- O(s) autor(es) garante(m) que a contribuição é original e inédita e que não está em processo de avaliação em outra(s) revista(s);
- A revista não se responsabiliza pelas opiniões, ideias e conceitos emitidos nos textos, por serem de inteira responsabilidade de seu(s) autor(es);
- É reservado aos editores o direito de proceder ajustes textuais e de adequação do artigos às normas da publicação
- Os Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantêm os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Creative Commons Attribution License, permitindo o compartilhamento do trabalho com reconhecimento da autoria do trabalho e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal), já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).