Perinatal Glyphosate-Based Herbicide Impaired Maternal Behavior by Reducing the Striatal Dopaminergic Activity and Delayed the Offspring Reflex Development

Autores

  • Paulo Ricardo Dell"™Armelina Rocha Universidade Paulista
  • Miriam Oliveira Ribeiro Universidade Presbiteriana Mackenzie
  • Thaisa Meira Sandini Universidade de São Paulo
  • Esther Lopes Ricci Adari Camargo Universidade Presbiteriana Mackenzie
  • Maria Martha Bernardi Universidade Paulista http://orcid.org/0000-0002-6860-9416
  • Helenice de Souza Spinosa Universidade de São Paulo

Palavras-chave:

reproductive toxicology, dopamine, pups"™ development, maternal care, herbicide.

Resumo

Abstract

Glyphosate, a non-selective herbicide, causes in mammals"™ cellular mutagenesis and toxic effects at the embryonic, fetal, and placental levels, even at low concentrations. This study investigated in rats the effects of perinatal exposure to Glyphosate-base herbicide (GLY-BH) on maternal behavior and the hypothalamic and striatal levels of dopamine and serotonin. The pup"™s physical and behavioral development were observed. GLY-BH herbicide (50 or 150 mg/kg, per os) was administered in dams during gestation (15º gestational day (GD15) to 7º lactation day (LD7). The female body weight (BW) was recorded throughout the pregnancy and lactation. The dams"™ reproductive performance was observed at postnatal day (PND) 2, the open field behavior at PND5 and the maternal behavior at PND6. At weaning, the dam"™s hypothalamic and striatal levels of dopamine and serotonin were measured. Maternal exposure to both GLY-BH doses: i) had few effects on BW gain; ii) decreased the number and body weight of the pups; iii) impaired the maternal care; iv) both doses decreased the activity of striatal and hypothalamic dopaminergic systems; v) 50 mg/kg increased and 150 mg/kg decreased the serotoninergic hypothalamic activity. In offspring, no effects on physical development but a delay on reflex development. Conclusions: perinatal exposure to GLY-BH decreased the maternal care by a reduced striatal dopaminergic activity and delayed the pup"™s reflex development.

 Resumo

O glifosato, um herbicida não seletivo, que causa mutagênese celular e efeitos tóxicos embrionário, fetal e placentário, mesmo em baixas concentrações. Este estudo investigou, em ratos, os efeitos da exposição perinatal ao herbicida à base de glifosato (GLY-BH) sobre o comportamento materno e os ní­veis hipotalâmicos e estriatais de dopamina e serotonina. O desenvolvimento fí­sico e comportamental dos filhotes foi observado. O herbicida GLY-BH (50 ou 150 mg / kg, per os) foi administrado í s mães durante a gestação (15º dia gestacional (GD15) a 7º dia de lactação (LD7). O peso corporal (PC) foi registrado durante a gestação e lactação O desempenho reprodutivo das mães foi observado no dia pós-natal (PND) 2, o comportamento de campo aberto no PND5 e o comportamento materno no PND 6. Ao desmame os ní­veis hipotalâmicos e estriatais da dopamina e da serotonina foram medidos. A exposição materna í s duas doses de GLY-BH: i) teve poucos efeitos sobre o ganho de PC; ii) diminuiu o número e peso corporal dos filhotes; iii) prejudicou o cuidado materno; iv) ambas as doses diminuí­ram a atividade dos sistemas dopaminérgicos estriatal e hipotalâmico; v) 50 mg / kg e 150 mg / kg de GLY-BH diminuí­ram a atividade hipotalâmica serotoninérgica. Na prole, não houve efeitos no desenvolvimento fí­sico, mas observou-se atraso no desenvolvimento reflexológico. Poucos efeitos na atividade geral do filhote foram observados. Conclusões: a exposição perinatal ao GLY-BH diminuiu o cuidado materno por uma atividade dopaminérgica estriada reduzida e atrasou o desenvolvimento do reflexo do filhote.

 

Biografia do Autor

Paulo Ricardo Dell"™Armelina Rocha, Universidade Paulista

Médico Veterinário pela Universidade Federal de Mato Grosso (UFMT, 2009). Ph.D. em Ciências Veterinárias pela Universití  di Torino, Itália (2013), reconhecido no Brasil pela Universidade de São Paulo (Patologia Experimental e Comparada, 2014). Pós-Doutorado em Neuroinflamação pela UNESP de Araçatuba. Desde 2015 é Pesquisador e Professor Titular da Universidade Paulista (UNIP), lecionando e orientando no Programa de Pós-Graduação em Patologia Ambiental e Experimental.

Principais tópicos de atuação em pesquisa: Patogenia de doenças infecciosas, caracterí­sticas epidemiológicas e moleculares das zoonoses que afetam o sistema nervoso central. É membro permanente do comitê de ética animal (CEUA-UNIP) e atual membro titular do conselho fiscal da Associação Brasileira de Patologia Veterinária. Foi responsável pelo Acordo Interinstitucional entre a Universití  di Torino (Itália) e a Universidade Paulista (Brasil) em 2017.

Miriam Oliveira Ribeiro, Universidade Presbiteriana Mackenzie

Possui graduação em Biologia pela Universidade Presbiteriana Mackenzie (1989), mestrado em Fisiologia pela Universidade de São Paulo (1994) e doutorado em Fisiologia pela Universidade de São Paulo (2001). Atualmente é professor adjunto da Universidade Presbiteriana Mackenzie. Seu laboratório está interessado em compreender as alterações fisiológicas e moleculares induzidas pela Sí­ndrome Metabólica em modelos animais. Os projetos estão principalmente voltados para a compreensão das mudanças nas bases neurofisiológicas do comportamento induzidas pela obesidade, hipotiroidismo e hipertiroidismo, com especial atenção em processos de socialização, aprendizado e memória.

Thaisa Meira Sandini, Universidade de São Paulo

Graduada no curso de Farmácia pela Universidade Estadual do Centro-Oeste - UNICENTRO (2009). Mestrado (2012) e Doutorado (2017) em Toxicologia e Análises Toxicológicas pela Faculdade de Ciências Farmacêuticas, Universidade de São Paulo- USP. Tem experiência na área de Farmacologia e Toxicologia Experimental, atuando principalmente nos seguintes temas: cognição, neurotransmissores e comportamento animal. Tem experiência como docente na disciplina de Bases Quí­micas e Farmacológicas no curso de Estética e Cosmética, nas disciplinas de Genética, Imunologia, Citologia, Histologia e Embriologia I, Citologia, Histologia e Embriologia II para o cursos de Ciências Biológicas, Enfermagem, Farmácia e Nutrição.

Esther Lopes Ricci Adari Camargo, Universidade Presbiteriana Mackenzie

Possui graduação em Ciências Biológicas pela Universidade Presbiteriana Mackenzie (2006), mestrado em Ciências pela Universidade de São Paulo- USP (2010) e doutorado em Ciências pela Universidade de São Paulo- USP (2014). Foi bolsista de Iniciação Cientí­fica e Mestrado pela FAPESP. Atualmente, trabalha na Universidade Presbiteriana Mackenzie, como Docente da Graduação, Pesquisadora vinculada ao laboratório de Fisiofarmacologia e Toxicologia. É coordenadora de estágios do curso de ciências biológicas no Centro de Ciências Biológicas e da Saúde (CCBS).

Maria Martha Bernardi, Universidade Paulista

Possui graduação em Ciências Biológicas pela Universidade de São Paulo (1975), mestrado(1978) e Doutorado (1981) em Fisiologia , área de concentração Farmacologia pelo Instituto de Ciências Biomédicas da Universidade de São Paulo e Pós-doutorado na Faculdade de Medicina Veterinária e Zootecnia sob a supervisão do Prof. João Palermo Neto. Atualmente esta ligada ao Curso de Pós-graduação em Patologia Ambiental e Experimental e no Curso de Pós-graduação em Odontologia da Universidade Paulista.Tem experiência na área de Farmacologia, Toxicologia e Neurociências. As linhas de pesquisa mais importantes em que atua são ligadas í  Toxicologia do desenvolvimento, Neurociências e comportamento. Estuda as alterações promovidas no perí­odo perinatal pelos moduladores do sistema imune no sistema nervoso central, metais pesados, praguicidas e desreguladores endócrinos tendo em vista a investigação de os aspectos comportamentais, endócrinos e o desenvolvimento de modelos animais de transtornos mentais. Desde 2016 faz parte da Plataforma zebrafish que visa divulgar, estudar e estabelecer modelos neste peixe para estudos nas mais variadas áreas da Ciência. É editora do livro Farmacologia Aplicada í  Medicina Veterinária e tem vários capí­tulos em livros de Farmacologia e Toxicologia Veterinária bem como em livro sobre Comportamento Animal. 

Helenice de Souza Spinosa, Universidade de São Paulo

Possui graduação em Medicina Veterinária pela Universidade de São Paulo (1976), Mestrado (1979) e Doutorado (1982), ambos em Fisiologia pela Universidade de São Paulo, Livre-docência (1987) em Patologia pela Universidade de São Paulo. Desde 1998 é Professora Titular do Departamento de Patologia da Faculdade de Medicina Veterinária e Zootecnia da Universidade de São Paulo. Tem experiência na área de Farmacologia e Toxicologia Veterinária, trabalhando principalmente com os seguintes temas: plantas tóxicas, toxicologia animal, comportamento animal, toxicidade e toxicologia perinatal.

Referências

Cox C. Glyphosate (Roundup) - Herbicide Factsheet. J Pestic REFORM. 1998;18(3):3-17.

Dallegrave E, Mantese FD, Oliveira RT, Andrade AJM, Dalsenter PR, Langeloh A. Pre- and postnatal toxicity of the commercial glyphosate formulation in Wistar rats. Arch Toxicol. 2007;81(9):665-673. doi:10.1007/s00204-006-0170-5

Romano RM, Romano MA, Bernardi MM, Furtado PV, Oliveira CA. Prepubertal exposure to commercial formulation of the herbicide glyphosate alters testosterone levels and testicular morphology. Arch Toxicol. 2010;84(4):309-317. doi:10.1007/s00204-009-0494-z

Romano MAMA, Wisniewski P, Viau P, et al. Glyphosate impairs male offspring reproductive development by disrupting gonadotropin expression. Arch Toxicol. 2012;86(4):663-673. doi:10.1007/s00204-011-0788-9

Savitz DA, Arbuckle T, Kaczor D, Curtis KM. Male pesticide exposure and pregnancy outcome. Am J Epidemiol. 1997;146(12):1025-1036.

Belle R, Marc J, Morales J, Cormier P, Mulner-Lorillon O. Letter to the editor: toxicity of Roundup and glyphosate. J Toxicol Env Heal B Crit Rev. 2012;15(4):236-237.

Benachour N, Sipahutar H, Moslemi S, Gasnier C, Travert C, Séralini GE. Time- and dose-dependent effects of roundup on human embryonic and placental cells. Arch Environ Contam Toxicol. 2007;53(1):126-133. doi:10.1007/s00244-006-0154-8

Marc J, Mulner-Lorillon O, Boulben S, Hureau D, Durand G, Bellé R. Pesticide Roundup Provokes Cell Division Dysfunction at the Level of CDK1/Cyclin B Activation. Chem Res Toxicol. 2002;15(3):326-331.

Richard S, Moslemi S, Sipahutar H, Benachour N, Seralini G-EE. Differential Effects of Glyphosate and Roundup on Human Placental Cells and Aromatase. Environ Health Perspect. 2005;113(6):716-720. doi:10.1289/ehp.7728

de Souza JS, Kizys MML, da Conceição RR, et al. Perinatal exposure to glyphosate-based herbicide alters the thyrotrophic axis and causes thyroid hormone homeostasis imbalance in male rats. Toxicology. 2017;377:25-37. doi:10.1016/j.tox.2016.11.005

Poulsen MS, Rytting E, Mose T, Knudsen LE. Modeling placental transport: Correlation of in vitro BeWo cell permeability and ex vivo human placental perfusion. Toxicol Vitr. 2009;23(7):1380-1386. doi:10.1016/j.tiv.2009.07.028

Daruich J, Zirulnik F, Gimenez MS. Effect of the herbicide glyphosate on enzymatic activity in pregnant rats and their fetuses. Environ Res. 2001;85(3):226-231. doi:10.1006/enrs.2000.4229

Cattani D, de Liz Oliveira Cavalli VL, Heinz Rieg CE, et al. Mechanisms underlying the neurotoxicity induced by glyphosate-based herbicide in immature rat hippocampus: Involvement of glutamate excitotoxicity. Toxicology. 2014;320(1):34-45. doi:10.1016/j.tox.2014.03.001

Pessoa-Pureur R, Wajner M. Cytoskeleton as a potential target in the neuropathology of maple syrup urine disease: J Inherit Metab Dis. 2007;30(5):664-672. doi:10.1007/s10545-007-0562-6

Gallegos CECCE, Bartos M, Bras C, Gumilar F, Antonelli MCM, Minetti A. Exposure to a glyphosate-based herbicide during pregnancy and lactation induces neurobehavioral alterations in rat offspring. Neurotoxicology. 2016;53:20-28. doi:10.1016/j.neuro.2015.11.015

Melo AI. Role of sensory, social, and hormonal signals from the mother on the development of offspring. In: Advances in Neurobiology. Vol 10. ; 2015:219-248. doi:10.1007/978-1-4939-1372-5_11

Gerardin DCC, Pereira OCM, Kempinas GWG, Florio JC, Moreira EG, Bernardi MM. Sexual behavior, neuroendocrine, and neurochemical aspects in male rats exposed prenatally to stress. Physiol Behav. 2005;84(1):97-104. doi:10.1016/j.physbeh.2004.10.014

Moniz A, Cruz-Casallas P, Oliveira C. Perinatal Fenvalerate Exposure:: Behavioral and Endocrinology Changes in Male Rats. Neurotoxicol Teratol. 1999;21(5):611-618. doi:10.1016/S0892-0362(99)00004-5 |

Udo MSB, Sandini TM, Reis TM, Bernardi MM, Spinosa HS. Prenatal exposure to a low fipronil dose disturbs maternal behavior and reflex development in rats. Neurotoxicol Teratol. 2014;45C:27-33. doi:10.1016/j.ntt.2014.05.010

Sant"™Ana MG, Spinosa HS, Florio JC, et al. Role of early GnRH administration in sexual behavior disorders of rat pups perinatally exposed to lead. Neurotoxicol Teratol. 2001;23(2):203-212. doi:10.1016/S0892-0362(01)00118-0

Salvatori F, Talassi CBB, Salzgeber SAA, Spinosa HSS, Bernardi MMM. Embryotoxic and long-term effects of cadmium exposure during embryogenesis in rats. Neurotoxicol Teratol. 2004;26(5):673-680. doi:10.1016/j.ntt.2004.05.001

Sant"™Ana MG, Moraes R, Bernardi MM. Toxicity of cadmium in Japanese quail: evaluation of body weight, hepatic and renal function, and cellular immune response. Environ Res. 2005;99(2):273-277. doi:10.1016/j.envres.2005.06.003

Williams GM, Kroes R, Munro IC. Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans. Regul Toxicol Pharmacol. 2000;31(2 Pt 1):117-165. doi:10.1006/rtph.1999.1371

Kirsten T, Chaves-Kirsten G, Bernardes S, et al. Lipopolysaccharide Exposure Induces Maternal Hypozincemia, and Prenatal Zinc Treatment Prevents Autistic-Like Behaviors and Disturbances in the Striatal Dopaminergic and mTOR Systems of Offspring. PLoS One. 2015;10(7):e0134565. doi:10.1371/journal.pone.0134565

Sandini TM, Udo MSB, Reis-Silva TM, Bernardi MM, Spinosa H de S. Prenatal exposure to integerrimine N-oxide impaired the maternal care and the physical and behavioral development of offspring rats. Int J Dev Neurosci. 2014;36:53-63. doi:10.1016/j.ijdevneu.2014.05.007

St�hle L, Collin A-K, Ungerstedt U. Effects of halothane anaesthesia on extracellular levels of dopamine, dihydroxyphenylacetic acid, homovanillic acid and 5-hydroxyindolacetic acid in rat striatum: a microdialysis study. Naunyn Schmiedebergs Arch Pharmacol. 1990;342(2):136-140. doi:10.1007/BF00166955

Bourgoin S, Ternaux JP, Boireau A, Héry F, Hamon M. Effects of halothane and nitrous oxide anaesthesia on 5-HT turn-over in the rat brain. Naunyn Schmiedebergs Arch Pharmacol. 1975. doi:10.1007/BF00500519

Felicio LF, Florio JC, Sider LH, Cruz-Casallas PE, Bridges RS. Reproductive experience increases striatal and hypothalamic dopamine levels in pregnant rats. Brain Res Bull. 1996;40:253-256. doi:10.1016/0361-9230(96)00008-1

Kirsten TB, Bernardi MM. Acute toxicity of Psilocybe cubensis (Ear.) Sing., Strophariaceae, aqueous extract in mice. Rev Bras Farmacogn. 2010;20(3):397-402. doi:10.1590/S0102-695X2010000300017

Numan M. A neural circuitry analysis of maternal behavior in the rat. Acta Paediatr Suppl. 1994;397(Suppl 397):19-28.

Numan M, Fleming AS, Levy F. Maternal behavior. In: Knobil and Neill"™s Physiology of Reproduction. ; 2006. doi:10.1016/B978-012515400-0/50040-3

Numan M. Motivational systems and the neural circuitry of maternal behavior in the rat. Dev Psychobiol. 2007;49(1):12-21. doi:10.1002/dev.20198

Olazábal DE, Pereira M, Agrati D, et al. New theoretical and experimental approaches on maternal motivation in mammals. Neurosci Biobehav Rev. 2013;37(8):1860-1874. doi:10.1016/j.neubiorev.2013.04.003

Kristal MB. The biopsychology of maternal behavior in nonhuman mammals. ILAR J. 2009;50(1):51-63. doi:10.1093/ilar.50.1.51

Teodorov E, Felí­cio LF, Bernardi MM. Maternal Behavior. In: Andersen M, Tufick S, eds. Animal Models as Ethical Tools in Biomedical RRsearch. São Paulo: CLR Balieiro Editores; 2010:149-162.

Stern JM, Lonstein JS. Neural mediation of nursing and related maternal behaviors. In: Progress in Brain Research. Vol 133. ; 2001:263-278. doi:10.1016/S0079-6123(01)33020-0

Parent CI, Meaney MJ. The influence of natural variations in maternal care on play fighting in the rat. Dev Psychobiol. 2008;50(8):767-776. doi:10.1002/dev.20342

Caldji C, Diorio J, Meaney MJ. Variations in maternal care in infancy regulate the development of stress reactivity. Biol Psychiatry. 2000;48(12):1164-1174. doi:10.1016/S0006-3223(00)01084-2

Champagne FA, Curley JP. Epigenetic mechanisms mediating the long-term effects of maternal care on development. Neurosci Biobehav Rev. 2009;33(4):593-600. doi:10.1016/j.neubiorev.2007.10.009

Suchecki D. Maternal regulation of the infant"™s hypothalamic-pituitary-adrenal axis stress response: Seymour "˜Gig"™ Levine"™s legacy to neuroendocrinology. J Neuroendocrinol. 2018;30(7):e12610. doi:10.1111/jne.12610

Olivier B, Mos J. Rodent models of aggressive behavior and serotonergic drugs. Prog Neuropsychopharmacol Biol Psychiatry. 1992;16(6):847-870. doi:10.1016/0278-5846(92)90104-M

Bosch OJ. Maternal nurturing is dependent on her innate anxiety: The behavioral roles of brain oxytocin and vasopressin. Horm Behav. 2011;59(2):202-212. doi:10.1016/j.yhbeh.2010.11.012

Lonstein JS. resolving apparent contradictions concerning the relationships among fear or anxiety and aggression during lactation: theoretical comment on D"™Anna, Stevenson, and Gammie (2005). Behav Neurosci. 2005;119(4):1165-1168. doi:10.1037/0735-7044.119.4.1165

Zhang TY, Parent C, Weaver I, Meaney MJ. Maternal programming of individual differences in defensive responses in the rat. In: Annals of the New York Academy of Sciences. Vol 1032. ; 2004:85-103. doi:10.1196/annals.1314.007

Rosenblatt JS, Factor EM, Mayer AD. Relationship between maternal aggression and maternal care in the rat. Aggress Behav. 1994;20(3):243-255. doi:10.1002/1098-2337(1994)20:3<243::AID-AB2480200311>3.0.CO;2-L

Salamone JD. The behavioral neurochemistry of motivation: Methodological and conceptual issues in studies of the dynamic activity of nucleus accumbens dopamine. J Neurosci Methods. 1996. doi:10.1016/0165-0270(95)00125-5

Ikemoto S. Brain reward circuitry beyond the mesolimbic dopamine system: A neurobiological theory. Neurosci Biobehav Rev. 2010;35(2):129-150. doi:10.1016/j.neubiorev.2010.02.001

Ikemoto S, Bonci A. Neurocircuitry of drug reward. Neuropharmacology. 2014;76(PART B):329-341. doi:10.1016/j.neuropharm.2013.04.031

Grillner S, Robertson B. The Basal Ganglia Over 500 Million Years. Curr Biol. 2016;26(20):R1088-R1100. doi:10.1016/j.cub.2016.06.041

Anadón A, Pino J Del, Martí­nez MA, et al. Neurotoxicological effects of the herbicide glyphosate. Toxicol Lett. 2008;1805:S164. doi:10.1016/j.toxlet.2008.06.324

Silva MRPR, Bernardi MMM, Felicio LFF. Effects of dopamine receptor antagonists on ongoing maternal behavior in rats. Pharmacol Biochem Behav. 2001;68(3):461-468. doi:10.1016/S0091-3057(01)00471-3

Hernández-Plata I, Giordano M, Dıáz-Munhoz M, Rodrí­guez VM, Dí­az-Muñoz M, Rodrí­guez VM. The herbicide glyphosate causes behavioral changes and alterations in dopaminergic markers in male Sprague-Dawley rat. Neurotoxicology. 2015;46(0):79-91. doi:http://dx.doi.org/10.1016/j.neuro.2014.12.001

Van Wimersma Greidanus TB, Maigret C, Torn M, et al. Dopamine D-1 and D-2 receptor agonists and antagonists and neuropeptide-induced excessive grooming. Eur J Pharmacol. 1989;173(2-3):227-231.

Roeling TAP, Veening JG, Peters JPW, Vermelis MEJ, Nieuwenhuys R. Efferent connections of the hypothalamic "grooming area" in the rat. Neuroscience. 1993;56(1):199-225. doi:10.1016/0306-4522(93)90574-Y

Kruk MR, Westphal KGC, Van Erp AMM, et al. The hypothalamus: Cross-roads of endocrine and behavioural regulation in grooming and aggression. In: Neuroscience and Biobehavioral Reviews. Vol 23. ; 1998:163-177. doi:10.1016/S0149-7634(98)00018-9

Roeling T, Veening JG, Peters JP, Vermelis ME, Nieuwenhuys R. Efferent connections of the hypothalamic "grooming area" in the rat. Neuroscience. 1993;56(1):199-225. doi:10.1016/0306-4522(93)90574-Y

Drago F, Pedersen CA, Caldwell JD, Prange AJ. Oxytocin potently enhances novelty-induced grooming behavior in the rat. Brain Res. 1986;368(2):287-295. doi:10.1016/0006-8993(86)90573-1

Olazabal DE, Abercrombie E, Rosenblatt JS, Morrell JI. The content of dopamine, serotonin, and their metabolites in the neural circuit that mediates maternal behavior in juvenile and adult rats. Brain Res Bull. 2004;63(4):259-268. doi:10.1016/j.brainresbull.2004.02.009rS0361923004000693 [pii]

Johns JM, Joyner PW, McMurray MS, et al. The effects of dopaminergic/serotonergic reuptake inhibition on maternal behavior, maternal aggression, and oxytocin in the rat. Pharmacol Biochem Behav. 2005;81(4):769-785. doi:10.1016/j.pbb.2005.06.001

Bosch OJ, Müsch W, Bredewold R, Slattery DA, Neumann ID. Prenatal stress increases HPA axis activity and impairs maternal care in lactating female offspring: implications for postpartum mood disorder. Psychoneuroendocrinology. 2007;32(3):267–278. doi:10.1016/j.psyneuen.2006.12.012

Angoa-Perez M, Kuhn DM. Neuronal serotonin in the regulation of maternal behavior in rodents. Neurotransmitter. 2015;2:2-7. doi:10.14800/nt.615

Jørgensen H, Riis M, Knigge U, Kjaer a, Warberg J. Serotonin receptors involved in vasopressin and oxytocin secretion. J Neuroendocrinol. 2003;15(3):242-249. doi:10.1046/j.1365-2826.2003.00978.x

Bagdy G. Role of the hypothalamic paraventricular nucleus in 5-HT1A, 5-HT2A and 5-HT2C receptor-mediated oxytocin, prolactin and ACTH/corticosterone responses. Behav Brain Res. 1995;73(1-2):277-280. doi:10.1016/0166-4328(96)00112-X

Ito H, Shimogawa Y, Kohagura D, Moriizumi T, Yamanouchi K. Inhibitory role of the serotonergic system on estrogen receptor alpha expression in the female rat hypothalamus. Neurosci Lett. 2014;583:194-198. doi:10.1016/j.neulet.2014.09.043

Angoa-Pérez M, Kuhn D. Neuronal serotonin in the regulation of maternal behavior in rodents. Neurotransmitter. 2015;2:e615. doi:doi: 10.14800/nt.615.

Terasawa E. Neurobiological Mechanisms of the Onset of Puberty in Primates. Endocr Rev. 2001;22(1):111-151. doi:10.1210/er.22.1.111

Altman J, Sudarshan K. Postnatal development of locomotion in the laboratory rat. Anim Behav. 1975;23:896-920. doi:10.1016/0003-3472(75)90114-1

Shriner AM, Drever FR, Metz GA. The development of skilled walking in the rat. Behav Brain Res. 2009;205(2):426-435. doi:10.1016/j.bbr.2009.07.029

Nornes HO, Das GD. Temporal pattern of neurogenesis in spinal cord of rat. I. An autoradiographic study - time and sites of origin and migration and settling patterns of neuroblasts. Brain Res. 1974. doi:10.1016/0006-8993(74)91011-7

WU L. Effect of perinatal iron deficiency on myelination and associated behaviors in rat pups. Behav Brain Res. 2008;188(2):263-270. doi:10.1016/j.bbr.2007.11.003

Scott B., Frankland P., Li L, Yeomans J. Cochlear and trigeminal systems contributing to the startle reflex in rats. Neuroscience. 1999;91(4):1565-1574. doi:10.1016/S0306-4522(98)00708-8

Yeomans J. Tactile, acoustic and vestibular systems sum to elicit the startle reflex. Neurosci Biobehav Rev. 2002;26(1):1-11. doi:10.1016/S0149-7634(01)00057-4

Publicado

2019-06-04

Edição

Seção

Artigos