O COMPORTAMENTO COMO UM SINAL PRECOCE DE TOXICIDADE E LESÕES NO SISTEMA RESPIRATÓRIO INDUZIDAS POR CÁDMIO EM ZEBRAFISH

Autores

  • Maria Martha Bernardi Programa de Pós-graduação em Patologia Ambiental e Experimental (UNIP) UFABC http://orcid.org/0000-0002-6860-9416
  • João Carlos Shimada BORGES UNIP
  • Douglas Amaral dos SANTOS UNIP
  • Débora Alvares Leite FIGUEIREDO UNIP
  • Thiago Berti KIRSTEN UNIP
  • José Roberto Machado da Cunha SILVA UNIP
  • Thaisa Meira SANDINI UNIP

Palavras-chave:

intoxicação por metais, Danio rerio, comportamento, histopatologia, neurotoxicidade.

Resumo

O objetivo do presente estudo foi determinar a validade do comportamento como sinal precoce de toxicidade e as  lesões respiratórias induzidas pela exposição aguda de cádmio em peixe-zebra adulto (Danio rerio). Foram avaliados os efeitos de três concentrações de cádmio (35, 45 e 55 μg / L) no comportamento do peixe-zebra (atividade geral, comportamento exploratório / motor, subida à superfí­cie da água, tremores e movimentos erráticos) e a histologia das brânquias após 1 h de exposição.  Comparados aos grupos controle, a exposição dos peixes ao cádmio aumentou o número de subidas para a superfí­cie da água, o tempo total gasto na superfí­cie da água, a porcentagem e a intensidade dos tremores e de movimentos erráticos. A exposição ao cádmio também causou lesão de estágio I das brânquias, com presença de células de cloreto em lamelas secundárias, dilatação dos capilares, hiperplasia do epitélio branquial e fusão das lamelas de brânquias secundárias. Esses efeitos foram observados principalmente em concentrações de 45 e 55 μg / L. Estes resultados indicam que as concentrações de 45 e 55 μg / L de cádmio induzem disfunção comportamental e 55 ug/L lesão branquial, mesmo com apenas 1 hora de exposição, revelando comprometimento do sistema respiratório. O presente modelo pode ser uma ferramenta interessante para analisar toxicidade precoce e lesões respiratórias em peixes.

Biografia do Autor

Maria Martha Bernardi, Programa de Pós-graduação em Patologia Ambiental e Experimental (UNIP) UFABC

Possui graduação em Ciências Biológicas pela Universidade de São Paulo (1975), mestrado(1978) e Doutorado (1981) em Fisiologia, área de concentração Farmacologia pelo Instituto de Ciências Biomédicas da Universidade de São Paulo e Pós-doutorado na Faculdade de Medicina Veterinária e Zootecnia sob a supervisão do Prof. João Palermo Neto. Atualmente esta ligada ao Curso de Pós-graduação em Patologia Ambiental e Experimental e no Curso de Pós-graduação em Odontologia da Universidade Paulista.Tem experiência na área de Farmacologia, Toxicologia e Neurociências. As linhas de pesquisa mais importantes em que atua são ligadas í  Toxicologia do desenvolvimento, Neurociências e comportamento. Estuda as alterações promovidas no perí­odo perinatal pelos moduladores do sistema imune no sistema nervoso central, metais pesados, praguicidas e desreguladores endócrinos tendo em vista a investigação de os aspectos comportamentais, endócrinos e o desenvolvimento de modelos animais de transtornos mentais. Desde 2016 faz parte da Plataforma zebrafish que visa divulgar, estudar e estabelecer modelos neste peixe para estudos nas mais variadas áreas da Ciência. É Lí­der- coordenadora do grupo de Pesquisa-CNPq Toxicologia do Sistema Nervoso Central.

João Carlos Shimada BORGES, UNIP

Curso de Pós-graduação em Patologia Ambiental e Experimental da Universidade Paulista.

Douglas Amaral dos SANTOS, UNIP

Departamento de Biologia Celular e do Desenvolvimento do Instituto de Ciências Biomédicas da Universidade de São Paulo.

Débora Alvares Leite FIGUEIREDO, UNIP

Departamento de Biologia Celular e do Desenvolvimento do Instituto de Ciências Biomédicas da Universidade de São Paulo.

Thiago Berti KIRSTEN, UNIP

Faculdade de Ciências Farmacêuticas, Departamento de Análises Clí­nicas e Toxicológicas da Universidade de São Paulo.

José Roberto Machado da Cunha SILVA, UNIP

Departamento de Biologia Celular e do Desenvolvimento do Instituto de Ciências Biomédicas da Universidade de São Paulo.

Thaisa Meira SANDINI, UNIP

Faculdade de Ciências Farmacêuticas, Departamento de Análises Clí­nicas e Toxicológicas da Universidade de São Paulo.

Referências

Almazan G, Liu HN, Khorchid A, Sundararajan S, Martinez-Bermudez A.K., Chemtob S. (2000) Exposure of developing oligodendrocytes to cadmium causes HSP72 induction, free radical generation, reduction in glutathione levels, and cell death. Free Radic Biol Med. 2000; 29:858–869.

Andujar P, Bensefa-Colas L, Descatha A. Acute and chronic cadmium poisoning. Rev. Med. Interne, 2010; 31:107–115.

Bailey J, Oliveri A., Levin, ED. Zebrafish model systems for developmental neurobehavioral toxicology. Birth Defects Res. Part C - Embryo Today Rev. 2013;99(1):14-23

Bernardi MM, Dias SG, Barbosa, VE .Neurotoxicity of neem commercial formulation (Azadirachta indica A. Juss) in adult zebrafish (Danio rerio). Environ Toxicol Pharmacol, 2013;36:1276–1282.

Blaser RE, Chadwick L, McGinnis GC. Behavioral measures of anxiety in zebrafish (Danio rerio). Behav. Brain Res. 2001; 208: 56–62.

Brennan CH. Zebrafish behavioural assays of translational relevance for the study of psychiatric disease. Rev. Neurosci.2001; 22: 37–48.

Brito AS. Manual de ensaios toxicológicos in vivo. Campinas Ed. UNICAMP, 1994; p.15–21.

Chen QL, Luo Z, Pan YX, Zheng JL, Zhu QL, Sun LD et al. Differential induction of enzymes and genes involved in lipid metabolism in liver and visceral adipose tissue of juvenile yellow catfish Pelteobagrus fulvidraco exposed to copper. Aquat. Toxicol. 2003; 136: 72–78.

Collier AD, Kalueff AV, Echevarria DJ. (2017) Zebrafish models of anxiety-like behaviors. In :The Rights and Wrongs of Zebrafish: Behavioral Phenotyping of Zebrafish.2017; p. 45–72.

CONAMA RESOLUÇíO No 357, 2005.Ministério Do Meio Ambiente. Brasil. Resolução CONAMA Nº 357/2005 - "Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências.". - Data da legislação: 17/03/2005 - Publicação DOU nº 053, de 18/03/2005, págs. 58-63 Status: Alterada pelas Resoluções nº 370, de 2006, nº 397, de 2008, nº 410, de 2009, e nº 430, de 2011. Complementada pela Resolução nº 393, de 2009. Processos:- Origem: 02000.002378/2002-43 - QUE DISPÕE SOBRE ANíLISE REVISíO E ATUALIZAÇíO DA RESOLUÇíO CONAMA Nº 020/86

Eissa BL, Ossana NA, Ferrari L, Salibián A. Quantitative behavioral parameters as toxicity biomarkers: Fish responses to waterborne cadmium. Arch Environ Contam Toxicol. 2010; 58: 1032–1039.

Fern R, Black JA, Ransom BR, Waxman SG. Cd(2+)-induced injury in CNS white matter. J Neurophysiol, 1996;76: 3264–3273.

Gill TS, Tewari H, Pande J. Use of the fish enzyme system in monitoring water quality: effects of mercury on tissue enzymes. Comp Biochem Physiol. Part C, 1990; 97: 287–292.

Godt J, Scheidig F, Grosse-Siestrup C, Esche V, Brandenburg P, Reich A., et al. The toxicity of cadmium and resulting hazards for human health. J. Occup. Med. Toxicol. 2006; 1:22.

Goedee HS, Brekelmans GJ, van Asseldonk JT, Beekman R, Mess WH, Visser LH. High resolution sonography in the evaluation of the peripheral nervous system in polyneuropathy--a review of the literature. Eur J Neurol, 2013; 20, 1342–1351.

Haider S, Anis L, Batool Z, Sajid I, Naqvi F, Khaliq S, Ahmed S. Short term cadmium administration dose dependently elicits immediate biochemical, neurochemical and neurobehavioral dysfunction in male rats. Metab Brain Dis. 2015;30: 83–92.

Hill AJ, Teraoka H, Heideman W, Peterson RE. Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol. Sci. 2005; 86(1):6-19.

Hwang PP, Chou, MY. Zebrafish as an animal model to study ion homeostasis. Pflugers Arch. 2013; 465:1233–1247.

Jones LJ, Norton WHJ. Using zebrafish to uncover the genetic and neural basis of aggression, a frequent comorbid symptom of psychiatric disorders. Behav. Brain Res. 2014; 276:171-180.

Joshua M, Lisberger SG. A tale of two species: Neural integration in zebrafish and monkeys. Neuroscience. 2015; 296:80-91.

Kabashi E, Brustein E, Champagne N, Drapeau P. Zebrafish models for the functional genomics of neurogenetic disorders. Biochim Biophys Acta. 2011; 1812(3):335-345.

Kalueff AV, Stewart AM, Gerlai R. Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci. 2014;35(2):63-75.

Kasherwani D, Lodhi H, Tiwari K, Shukla S, Sharma U. Cadmium toxicity to freshwater catfish, Heteropneustes fossilis (Bloch). Asian J Exp Sci., 2009; 23:149–156.

Kozlowski H, Kolkowska P, Watly J, Krzywoszynska K, Potocki S. General aspects of metal toxicity. Curr Med Chem. 2014;21(33):3721-3740.

Lafuente A. The hypothalamic-pituitary-gonadal axis is target of cadmium toxicity. An update of recent studies and potential therapeutic approaches. Food Chem Toxicol. 2013;59:395-404.

López E, Figueroa S, Oset-Gasque MJ, González MP. Apoptosis and necrosis: two distinct events induced by cadmium in cortical neurons in culture. British Journal of Pharmacology. 2003;138(5):901-911.

Lukawski K, Nieradko B, Sieklucka-Dziuba M. Effects of cadmium on memory processes in mice exposed to transient cerebral oligemia. Neurotoxicol Teratol.2005; 27(4):575-584.

Macdonald A, Silk L, Schwartz M, Playle RC (2002) A lead-gill binding model to predict acute lead toxicity to rainbow trout (Oncorhynchus mykiss). Comp. Biochem. Physiol. - C Toxicol. Pharmacol.2001; 133: 227–242.

McDowell EM, Trump BF. Histologic fixatives suitable for diagnostic light and electron microscopy. Arch Pathol Lab Med. 1976;100(8):405-414.

Mulligan TS, Weinstein BM. Emerging from the PAC: studying zebrafish lymphatic

development. Microvasc Res. 2014;96:23-30.

Nishimura Y, Murakami S, Ashikawa Y, Sasagawa S, Umemoto N, Shimada Y et al.

T. Zebrafish as a systems toxicology model for developmental neurotoxicity testing. Congenit Anom (Kyoto). 2015;55(1):1-16.

Nishimura Y, Yamaguchi JY, Kanada A, Horimoto K, Kanemaru K, Satoh M et al. Increase in intracellular Cd2+ concentration of rat cerebellar granule neurons incubated with cadmium chloride: Cadmium cytotoxicity under external Ca2+-free condition. Toxicol Vitr. 2006; 20, 211–216.

Palaniappan PR, Sabhanayakam S, Krishnakumar N, Vadivelu M. Morphological changes due to Lead exposure and the influence of DMSA on the gill tissues of the freshwater fish, Catla catla. Food Chem Toxicol.2008;46: 2440–2444.

Poleksic V, Mitrovic-Tutundzic V. Fish gills as a monitor of sublethal and chronic effects of pollution. In Müller R. (ed), Sublethal and Chronic Effects of Pollutants on Freshwater Fish. Cambridge Univ. Press., Cambridge, 1994,p. 339–352.

Pretto A, Loro VL, Morsch VM, Moraes BS, Menezes C, Santi A et al.Alterations in carbohydrate and protein metabolism in silver catfish (Rhamdia quelen) exposed to cadmium. Ecotoxicol. Environ. Saf. 2014;100: 188–192.

Rana SV. Perspectives in endocrine toxicity of heavy metals--a review. Biol Trace Elem Res. 2014l;160(1):1-14.

Rihel J, Schier AF. Behavioral screening for neuroactive drugs in zebrafish.Dev Neurobiol. 2012 ;72(3):373-385.

Roch M, Maly E. Relationship of cadmium-induced hypocalcemia with mortality in rainbow trout (Salmo gairdneri) and the influence of temperature on toxicity. J. Fish. Board Canada. 1979;36: 1297–1303.

Shaw BJ, Al-Bairuty G, Handy RD. Effects of waterborne copper nanoparticles and copper sulphate on rainbow trout, (Oncorhynchus mykiss): physiology and accumulation. Aquat Toxicol. 2012;116-117:90-101.

Sloman KA, Scott GR, Diao Z, Rouleau C, Wood CM, McDonald DG. Cadmium affects

the social behaviour of rainbow trout, Oncorhynchus mykiss. Aquat Toxicol. 2003;65(2):171-185.

Spence R, Gerlach G, Lawrence C, Smith C. The behaviour and ecology of the zebrafish, Danio rerio. Biol Rev Camb Philos Soc. 2008;83(1):13-34

Tan JL, Zon LI. Chemical screening in zebrafish for novel biological and therapeutic discovery. Methods Cell Biol. 2011;105:493-516.

Teraoka H, Dong W, Hiraga T. Zebrafish as a novel experimental model for developmental toxicology. Congenit Anom (Kyoto). 2003 ;43(2):123-132.

Tierney KB. Behavioural assessments of neurotoxic effects and neurodegeneration in zebrafish. Biochim Biophys Acta. 2011;1812(3):381-389.

Wang B, Du Y. Cadmium and its neurotoxic effects. Oxid Med Cell Longev.2013;2013:898034.

Westerfield, M. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio Rerio),, 4th Editio. edn. Univ. of Oregon Press, Eugene, 2000.

WHO -World Health Organization (2007) Exposure to cadmium : a major public health concenr. disponí­vel em: http://www.who.int/ipcs/features/cadmium.pdf, acesso em 29/04/2018,

Xu X, Scott-Scheiern T, Kempker L, Simons K. Active avoidance conditioning in zebrafish (Danio rerio). Neurobiol Learn Mem. 2007;87(1):72-77.

Xuan R, Wu H, Li Y, Wang J, Wang L. Sublethal Cd-induced cellular damage and metabolic changes in the freshwater crab Sinopotamon henanense. Environ. Sci. Pollut. Res.2014; 21: 1738–1745.

YeÅŸilbudak B, Erdem C. Cadmium accumulation in gill, liver, kidney and muscle tissues of common carp, Cyprinus carpio, and Nile tilapia, Oreochromis niloticus.Bull Environ Contam Toxicol. 2014;92(5):546-50.

Yoder JA, Nielsen ME, Amemiya CT, Litman GW. Zebrafish as an immunological model system. Microbes Infect. 2002;4(14):1469-1478.

Zon LI, Peterson RT. In vivo drug discovery in the zebrafish. Nat Rev Drug Discov. 2005; 4(1):35-44.

Downloads

Publicado

2018-05-23

Edição

Seção

Artigos